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Abstract—The well-known Michaelis-Menten (MM) models 

give locally rich-kinetic information of proteins or 

metabolites. However, its parameter estimation requires 

increasingly large amount of experimental data and 

repeated modifications. In this study, we proposed a 

parallel-and-interactive optimization scheme for 

computationally MM modeling. The scheme integrates the 

most stochastic physiology evolution (genetic algorithm) and 

the less-stochastic swarm intelligence (particle swarm 

optimization) to ensure a flexible search.  The scheme was 

tested with artificially time series data. Simulation results 

show the proposed scheme possesses good ability in global 

search even searching in a rather wide space (a range 

between 0 and 50000).  

 

Index Terms—computational intelligence, data mining, 

computational biology 

 

I. INTRODUCTION 

MM systems which are described as a group of 

nonlinear ordinary differential equations shown in Eq. (1) 

are effective models for characterizing molecular 

biological systems and analyzing the dynamics of 

underlying systems. The rate change of the involved 

constitutes (metabolites, genes and proteins) is described 

as the generation flux and the consumption flux [1]:  

1 1( , ) ( , ),   1,2,..., , (1)i ij n ij n

j j

x V x x V x x i n       (1) 

where fluxes are the combination of power-law and Hill 

functions. It is a big challenge to perform reverse 

engineering from experimental time series data due to the 

nonlinearity and complexity. Further, MM systems 

possess sloppy features [2] which increase the challenge 

of computational approach for parameter estimation. 

Parameter estimation was converted into a mini-max 

problem through assessment error functions. Chou and 

Voit used dynamic flux estimation to obtain a systematic 

approach for the estimation of the parameters and 

function forms of MM systems [3]. 

GA, a biologically-inspired algorithm, evolves a 

population of individuals (chromosomes) which are 

encoded with bit strings or real numbers. Each individual 

expresses a candidate solution of optimization problems 
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and evolves toward a better solution. Evolution starts 

from a population with randomly generated individuals. 

Individuals are stochastically selected from the 

population (based on their fitness) and modified through 

crossover and mutation to form a new population. GA is 

usually combined with local search or swarm techniques 

for convergent improvement. Nik et al. tested various in-

series combinations and integrations of GA and PSO to 

achieve an optimal arrangement of payment inspection 

units in a massive network [4]. Rashidi and Sharifian 

recently proposed a hybrid of GA and ant colony 

optimization for task assignment in mobile cloud [5]. 

PSO, a stylized simulation for the movement of bird 

flock or fish school, gets optimal solutions through 

moving particles around a searching space according to a 

simple mathematical formula over particles’ positions 

and velocity. Particles’ movement is influenced by their 

locally best positions and is guided toward the global-best 

position. In this way, PSO is expected to move a swarm 

toward the best solution. However, prematurely 

convergence is the issue. Montes de Oca and coworkers 

proposed Frankenstein’s dynamic topology to improve 

population diversity [6]. Taherkhani and Safabakhsh 

reviewed various inertial-weight adaptation strategies and 

proposed a stability-based adaptive inertia weight 

wherein the weight is determined in different dimensions 

for each particle [7]. Meng and coworkers took a review 

for various hybrids of PSO and genetic operations 

(selection, crossover or mutation) [8]. They proposed a 

crisscross search to let PSO avoid from the entrapment of 

local optimums of multimodal optimization problems, 

wherein horizontal crossover performed in the same 

dimension and vertical crossover operated in different 

dimensions. Lee and coworkers divided individuals into 

two groups ( p%  for Part 1 and (1 − p)%  for Part 2) 

according to their fitness [9]. The individuals in Part 2 

were replaced by random individuals ( r% ) and the 

offspring of the individuals in Part 1 through crossover 

and mutation ((1 − r)%).  

Instead of combing GA and PSO in series or through 

integration, or enhancing the globally searching ability of 

PSO through topology variation or inertial weight 

modification, we let GA and PSO perform in parallel and 

communicate with each other from generation s to 

generations. 
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II. PARALLEL-AND-INTERACTIVE SCHEMES FOR 

MICHAELIS-MENTEN MODELING 

GA searches the global optimal point by evolutionary 

operators, while PSO’s particles find the better result by 

moving in a searching space. GA’s evolutionary process 

always takes more time (generations) to get improvement. 

In the case of the same generations, GA’s role is much 

less than PSO’s role in searching better solutions. To 

solve this issue, we need to strengthen GA’s performance 

to a comparatively searching ability as PSO and then take 

an interactive commutation. Therefore, we let GA runs 

twice or more times for a run of PSO, a parallel process 

called nxGA-PA algorithm. Fig. 1 is the proposed 

parallel-and-interactive scheme which integrates GA and 

PSO in a parallel way and share (exchange) the best 

individual to achieve a flexible search. The GA runs n 

times when PSO finishes a run such that a competitive 

search for GA and PSO is achieved.  

The heuristic crossover and non-uniform mutation are 

used in this study [10], [11]. The offspring for a parents 

 (1) (1)(1) (1)
1 2, ,..., nx x x x

 
and  (2) (2)(2) (2)
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is 
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i i i i
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where u is a uniformly distributed random number in the 

interval [0,1], and the parent x
(2)

 has fitness value which 

is not worse than that of the parent x
(1)

. If the generated 

offspring lies outside a feasible region a new random 

number u is generated to generate another offspring. This 

process is repeated up to k times as required. After k 

times attempts, if the crossover operation fails to generate 

a feasible offspring then a random point in the feasible 

region is used to replace the infeasible offspring [12]. 

Michalewicz’s non-uniform mutation is one of the 

most widely used mutation operators for real-coded GA 

[11]. For a point  1 2, ,..., ,t t t t
nx x x x
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The function  ,t y takes value in the interval: 

 
1

1

, 1 , (3)

b

Tt y y u

 
 

 

 
 

  
 
 
 

                     (3)

 

where r, u are random values between 0 and 1, x 𝑖
𝑙 , x 𝑖

𝑢 are 

the lower and upper bounds of the ith component, T 

denotes the maximum number of generations and b 

determine the strength of the mutation operator. The 

mutation uniformly searches over the entire space in the 

early generation and becomes locally searching the space 

(closer to its descendants) in the later generation [11], 

[12]. 

 
Figure 1. The scheme of parallel-and-interactive nGA-PSO algorithm. 

Each particle in PSO occupies a point in a D-

dimensional space (a potential solution vector). When 

particles fly in a space there are three forces upon them. 

The first one is the inertia to let particles maintain their 

current directions and velocities. The second force pushes 

each particle towards its best position in the past 

(personal best, pbest). The third one forces all particles 
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toward the best-so-far position of the swarm (global best, 

gbest) [13]. 

A. Michaelis-Menten-Based Biological Systems 

Three different MM-based biological systems were 

used to test the proposed algorithm. These systems vary 

in structures, in the number of interactions and in the 

number of kinetic parameters. The reversible pathway [14] 

possesses two dependent variables and eight kinetic 

parameters. The metabolic pathway with branch points 

[15] has four dependent variables and eight parameters. 

The four-state kinetic system [1] has four dynamic 

variables and nine kinetic parameters. 

The reversible pathway 

The system shown in Fig. 2 is a reversible bio-reaction 

pathway [14].  

 

Figure 2. A reversible pathway [14]. 

This system has two independent variables (X3 and X4) 

and two dependent variables (X1 and X2). There are 

eighteen kinetic parameters to be estimated. The 

governing equations are described as 

.
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The algorithms were implemented in Matlab 

environment. A parallel combination 2GA-PSO with a 

maximum of 50,000 iterations is used to get the 

parameters. The searching range is set from 0 to 10,000. 

Fig. 3 shows the simulation results wherein the solid 

curves denote the true system and the estimated profiles 

are shown by the dotted and circle points. The initial 

condition for Case 1 (the upper figure) is 𝑋1 = 4, 𝑋2 =
3 in an experimental environment 𝑋3 = 9, 𝑋4 = 5 . The 

initial condition for Case 2 (the down figure) is 𝑋1 =
14, 𝑋2 = 10 in the environment 𝑋3 = 2, 𝑋4 = 4.8 . The 

sampling time is set at 0.05 seconds for Case 1 and 0.1 

seconds for Case 2. Simulation results show that the 

proposed scheme is able to get a nearly perfect prediction 

of the dynamic behavior for both cases. 

 

 

Figure 3. Simulation results for the reversible pathway tested with 
different initial conditions and experimental environments.  

The metabolic pathway with branch points 

Fig. 4 is a glyoxalase pathway with branch pints. By 

using X1, X2, X3 and X4 to, respectively, denote the 

concentration of hemithioacetal (HTA), methylglyoxal 

(MG), S-D-lactoylglutathione (SDLTHS), trypanothione 

(T(SH)2), D-glyceralde-hyde-3-phosphate (GAP) and 

dihydroxyacetone phosphate (DHAP), we have the 

following MM model: 
.

1 53 4 ,X v v v    

.

2 2 1 4 3,X v v v v     

.

3 5 6 ,X v v   

     .

4 6 4 3, (5)X v v v                                (5)
 

wherein X5 and X6 are independent variables and the rate 

equations 1 1 5 ,K Xv   2 2 6 ,K Xv 
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Figure 4. metabolic pathway with branch points [15]. 
(Source: http://jjj.biochem.sun.ac.za/database/silva/index.html) 

A 3GA-PSO parallel scheme is used in the parameter 

estimations of the metabolic system. There are eight 

parameters to be estimated. To examine the searching 

ability we tested the scheme with two searching ranges: a 

small range of [0, 10] (Case 1) and a large range of [0, 

10000] (Case 2). The same sampling time (0.04 seconds) 

and initial conditions ([0.14, 0, 0, 0.9]) with a fixed 

environmental condition (X5=0.072 and X6 =0.16) were 

used in both cases. Fig. 5 shows the simulation results. A 

perfect match for the prediction of the proposed method 

and the true dynamic behavior is observed. 

 

 

Figure 5. Simulation results for the metabolic pathway tested in a small 
searching space [0, 10] (Case 1, the upper figure) and a large range of [0, 

10000] (Case 2, the lower figure). 

Four-state metabolic pathways 

A four state pathway in Fig. 6 describes an enzyme 

molecule E that catalyzes the reaction from the substrate 

S to the product P. It has two electrically distinct 

conformational states: E with the binding site for the 

substrate S exposed (denoted by SE), and E* with the 

binding site for the product P exposed (denoted by E*P).  

 

Figure 6. four-state metabolic pathways. [1] 

The rate equations are shown as follows. 

1 4 4 1/ ( _ ) ( / ) * ( _ ) ,dE dt k SE k E k k S E    

1 2 2 1/ ( ) ( _ / ) * ( _ ) ,dSE dt k S E k E P k k SE    

4 3 4 3*/ ( _ ) ( ) * ( / _ ) *.(6)dE dt k E k E P k k P E    
  

(6) 

We use a parallel combination 3GA-PSO to estimate 

the parameter of the four-state kinetic systems. We 

further use a very large range ([0, 50000]) to show that 

the global searching ability of the proposed scheme is 

very strong. Fig. 7 is the simulation results for searching 

in a range of [0, 10] (the upper figure) and [0, 50000] (the 

down figure). A nearly perfect prediction is achieved in 

both cases. 

 

 

Figure 7. Simulation results for the four-state metabolic pathway tested 
in a small searching space [0, 10] (Case 1, the upper figure) and a very 

large range of [0, 50000] (Case 2, the lower figure). 
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III. CONCLUSION 

GA always serve in good condition for global best due 

to stochastic genetic operators, while PSO can deal with 

the locally optimal searching due to the characteristic of 

foraging movement. The proposed parallel and interactive 

scheme let GA (evolutionary algorithms) and PSO 

(swarm optimizations) maintain their own searching 

characteristics and achieve a more effective search 

through information communication such that the defects 

of GA in slow convergence and PSO in premature 

convergence are compensated. The nGA-PSO scheme 

considers the situation that GA takes more time to 

achieve a comparable improvement than PSO. Simulation 

results for these three systems shows that the larger the 

dimension of system is the larger the value of n is (n=2 

for two states and n=3 for four states). The technical 

contribution of this study is that through in-depth 

understanding of the essence of evolutionary and swarm 

algorithms we can use a simple scheme to achieve a 

fantastic compensation.  
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