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Abstract—This paper investigates the problem of computing 

all maximal contractions of a given ontology (set of ABox 

and TBox axioms) with respect to a consistent set of ABox 

axioms in description logics. Based on this concept of 

minimal inconsistent subsets which was introduced in our 

previous paper, an algorithm for computing all minimal 

inconsistent subsets of a given ontology is proposed. Then 

all maximal contractions can be computed by using the 

R-subtraction algorithm which was also proposed in our 

previous paper.  
 

Index Terms—description logic, maximal contractions, 

minimal inconsistent subsets, R-Calculus 

 

I. INTRODUCTION  

In the study of belief and knowledge base revision, 

one basic problem is to deduce or compute contractions 

[1], which are closely related to revision by the Levi and 

Harper identities. This paper focuses on the computation 

of contractions of a specific kind, called maximal 

contractions (or R -contractions) in description logics 

(DLs). Maximal contractions, first introduced in [2], 

were defined in first-order logic as maximal subsets of a 

formula set Γ, which are consistent with a consistent set 

Δ of atomic formulas and negations of atomic formulas.  

In this paper, we shall introduce the concept of 

maximal contraction into DLs and propose an algorithm 

for computing all maximal contractions of a given DL 

ontology with respect to a given set of ABox axioms 

based on computation of minimal inconsistent subsets. 

This paper will be elaborated with more details in the 

following sections. In Section 2, we will present the 

formal definition of all concepts and introduce the formal 

problem addressed in this paper. In Section 3, we 

propose an algorithm for computing all maximal 

contractions. Section 4 will have a general conclusion 

regarding all concepts, problem and algorithm stated in 

previous sections. 

II. PRELIMINARIES  

Firstly, it is necessary to consider the description logic 

𝐴𝐿𝐶 . For the convenience of the conduction on our 

algorithm, a concept name can be denoted by 𝐴, 𝐶 and 

                                                        
Manuscript received January 1, 2017; revised June 27, 2017. 

𝐷 can represent arbitrary concepts, and 𝑅 can denote a 

role name. Concepts in 𝐴𝐿𝐶  are formed with the 

following syntax: 

C, D ∶=  ⊤ |  ⊥  | A | C ⊓  D | C ⊔  D | ¬C | ∃R. C | ∃R. C. 

            (1) 

Individual names can be denoted by 𝑎, 𝑏 . ABox 

axioms have the form 𝐶(𝑎)  or 𝑅(𝑏, 𝑐)  and TBox 

axioms have the form 𝐶 ⊑  𝐷 or 𝐶 ≡  𝐷. 

Another case is that 𝐶 can be a set comprising of 

ABox and TBox axioms while 𝐷 be a consistent ABox. 

Maximal contractions of 𝐶 with respect to 𝐷 is defined 

as maximal subsets of C which are consistent with D, i.e. 

subsets of C which are consistent with D and there are no 

other subsets which subsume these sets and are also 

consistent with 𝐷. In our previous work [3], we defined 

the concept of minimal inconsistent subsets that is 

closely related to maximal contractions. Minimal 

inconsistent subsets (MISs) of an inconsistent set are 

subsets which are inconsistent themselves but can 

become consistent by removing any formula in them. It 

is proved that maximal contractions can be computed 

from minimal inconsistent subsets based on the GFMC 

framework [4]. Thus, we only need to find a way to 

effectively compute minimal inconsistent subsets of any 

given set of ABox and TBox axioms. 

III. ALGORITHMS FOR COMPUTING ALL MISS  

The following shows how to enumerate all MISs by 

firstly decomposing and then reconstructing ABox and 

TBox axioms.  

A. Conversion 

And now we set 𝑁 as the set of Abox and TBox 

axioms. Suppose that 𝑁𝑅 , NT and 𝑁𝑐  are the set of 

relations, the set of TBox axioms and the set of concepts 

of 𝑁 respectively. As described above, we should firstly 

convert all concepts of ABox axioms and concepts on the 

right hand side of TBox axioms in 𝑁 into NNF and then 

into DNF based on the following rules.  

Negative Normal Form To proceed, we let 𝛢 be an 

atomic concept and 𝐵, 𝐶 be concepts. The conversion of 

concepts to NNFs is as shown in Table I. 

For a ABox axiom 𝐶(𝛼), C will be converted into 

NNF. For a TBox axiom of the form 𝐴 ⊑ 𝐶 (inclusion) 
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or 𝐴  ≡  𝐶  (equality), only the concept C will be 

converted into NNF. 

TABLE I.  CONCEPTS CONVERSION 

A A 

¬A ¬A 

¬(B ⊓  C) ¬B ⊔  ¬C 

¬(B ⊔  C) ¬B ⊓  ¬C 

¬¬B B 

¬∀R. B ∃R. ¬B 

¬∃R. B ∀R. ¬B 

 

Disjunctive Normal Form After converting the 

concepts of ABox axioms and concepts on the right hand 

side of TBox axioms into NNF, the concepts of negative 

normal form will be further converted into their 

disjunctive normal forms as the following: 𝐶1
𝑖 ⊔ ⋯ ⊔

𝐶𝑚𝑖
𝑖  where 𝐶𝑗

𝑖 = 𝐶𝑗1
𝑖 ⊓ ⋯ ⊓ 𝐶𝑗𝑡

𝑖  is a conjunction of 

atomic concepts, negations of atomic concepts, universal 

restricted concepts, and existential restricted concepts. 

We use function GetDNF to convert negative normal 

forms into disjunctive normal forms. 

1. If 𝐶𝑗𝑘
𝑖 (1 ≤ 𝑘 ≤ 𝑗) is an atomic concept which 

has the form 𝐴(𝑎), then 𝐺𝐸𝑇𝐷𝑁𝐹(A(a)) = A(a); 

2. If 𝐶𝑗𝑘
𝑖  is a negation of atomic concept which has 

the form  ¬𝐴(𝑎) , then 𝐺𝐸𝑇𝐷𝑁𝐹(¬A(a)) =
¬A(a); 

3. If 𝐶𝑗𝑘
𝑖 has the form ∀𝑅. 𝐵 , then 

𝐺𝑒𝑡𝐷𝑁𝐹(∀𝑅. 𝐵)  =  ∀𝑅. 𝐺𝑒𝑡𝐷𝑁𝐹(𝐵); 

4. If 𝐶𝑗𝑘
𝑖  has the form ∃𝑅. 𝐵 , then 

𝐺𝑒𝑡𝐷𝑁𝐹(∃𝑅. 𝐵) =  ∃𝑅. 𝐺𝑒𝑡𝐷𝑁𝐹(𝐵). 

B. Extract Individual and Concept Set 

In order to distinguish different occurrences of the 

same individual name 𝛼 in 𝛮, we use the pair (𝛼, 𝑝𝑜𝑠) 

to denote an occurrence of 𝛼, where 𝑝𝑜𝑠 is the position 

of the occurrence. Let the 𝛭𝛵 as the maptables for the 

𝑝𝑜𝑠. We shall use function 𝐶𝑎𝑙𝑝𝑜𝑠 as follow to get the 

𝑝𝑜𝑠 for every axiom. And we shall use a concept 𝐶 

which is a DNF to get the 𝑝𝑜𝑠. Let 𝑗 to be the position 

of a conjunction include 𝐶 in this DNF. Let t be the 

position of 𝐶  in this conjunction. If this conjunction 

only has one item, let 𝑡 = 0. And we will make a DNF 

to be a group to find its position. Let the 𝑖  is this 

axiom’s position in the 𝛮. We shall set the 𝑛𝛼 = [𝑖] as 

the adventage number. The number of subsequent will 

get through the 𝐶𝑎𝑙𝑝𝑜𝑠. 

1. If the 𝑖 -th axioms in  𝛮  is of the form 𝐷 (a), 

𝐶 ⊑ 𝐷, or 𝐶 ≡ 𝐷, then 𝑝𝑟𝑒𝐷 = [𝑖]. 
2. If 𝐶 is an atomic concept, negation of atomic 

concept, universal restricted concept, or 

existential restricted concept in a DNF 𝐷, then 

𝑝𝑜𝑠𝐶 = 𝑝𝑟𝑒𝐷@[𝑗, 𝑡]. 
3. If ¬𝐶  is a negation of atomic concept, then 

𝑝𝑜𝑠𝐶 = 𝑝𝑜𝑠¬𝐶 . 

4. If 𝐷  is a DNF in ∀𝑅. 𝐷  or ∃𝑅. 𝐷 , then 

𝑝𝑟𝑒𝐷 = [𝑥] (x is not any axioms's position in 

the 𝛮), and then 𝛭𝛵 push back the 𝑝𝑜𝑠∃𝑅.𝐷 →
 [𝑥, 0] (or 𝑝𝑜𝑠∀𝑅.𝐷 →  [𝑥, 0]).  

And then, we get the 𝑝𝑜𝑠. We will get the sequence 

of number to represent a 𝑝𝑜𝑠. And the first number 

means the location of 𝛮. After that, every two number 

can be a group to marked this 𝐶 location in a DNF. 

The set of all occurrences of 𝑎 is denoted as 

𝑑𝑎 :
= {(𝑎, 𝑝𝑜𝑠)|𝑝𝑜𝑠 is the position of an occurrence of 𝑎} 

(2) 

TABLE II. A  

𝐴(𝑎) 𝑎 

¬𝐴(𝑎) 𝑎 

⊥ 0 

⊤ 0 

𝑅(𝑎, 𝑏) 𝑎, 𝑏 

∀𝑅. 𝐴(𝑎) 𝑎 

∃𝑅. 𝐴(𝑎) 𝑎 

 

Individual names 𝑎  can be extracted from ABox 

axioms according to rules shown in Table II, in the table 

above, 0 suggests no individual name needed to be 

extracted and the individual names 𝑎, 𝑏 in 𝑅(𝑎, 𝑏) has 

the same position. Hence, the set of individuals 𝐼𝑛𝐷 is 

⋃{𝑑𝑎}

𝑎

 

where a is an individual name. 

The set of atomic concepts can be extracted based on 

the following rules, 

1. If Α is an atomic concepts, 𝐴𝑡𝑜𝑚(𝛢) = {𝛢}. 

2. 𝐴𝑡𝑜𝑚¬𝛣 = 𝐴𝑡𝑜𝑚𝛣. 
3. 𝐴𝑡𝑜𝑚(𝛣 ∗ 𝐶) = 𝐴𝑡𝑜𝑚(𝛣) ∪ 𝐴𝑡𝑜𝑚(𝐶) , where ∗ 

is ⊔, ⊓, ⊑ or ≡. 

4. 𝐴𝑡𝑜𝑚(∀𝑅. 𝛣) = 𝐴𝑡𝑜𝑚(𝛣). 
5. 𝐴𝑡𝑜𝑚(∃𝑅. 𝛣) = 𝐴𝑡𝑜𝑚(𝛣). 

we shall use 𝜃 to denote atomic concept. Hence, the 

set of atomic concepts of 𝛣 is Atom(Β) and the set 

𝐿𝑠𝐶 of all atomic concepts in 𝛮 is 

⋃ 𝐴𝑡𝑜𝑚(𝐵).

𝐵∈𝑁

 

C. Decomposition 

In this section we need decompose the concepts 

from 𝛮. We will use 𝛺 to denote the set that named by 

an atomic concept. There are two aspects in the process 

of decomposition. The first aspect is the decomposition 

of individual, while the second one is filtering the 

relevant 𝛺. 
Individual Before decomposing the individual, we 

import 𝑙𝑎𝑏𝑒𝑙 for the source of an individual which 

determine where this individual is from. label is 

exclusively remarked by 𝑝𝑜𝑠 of a list of concepts. We 

need the rules to get the individual 𝑙𝑎𝑏𝑒𝑙 where 𝐶 for 

the example.  

1. If 𝐶 is an atomic concept, its 𝑙𝑎𝑏𝑒𝑙 is its 𝑝𝑜𝑠. 
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2. If 𝐶 is a negation of atomic concept, its 𝑙𝑎𝑏𝑒𝑙 
also is its 𝑝𝑜𝑠. 

3. If 𝐶 is ∀𝑅. 𝐵(𝑎), we should find all 𝑅 relations 

about 𝑅(𝑎, 𝑥) (𝑥 is the variable value which from 

𝐼𝑛𝐷), and then make a new axiom as 𝐵(𝑥) and 

make its new 𝑝𝑜𝑠𝑏  as [𝑝, 0] (p is the new 

𝑝𝑜𝑠 not occurs in 𝛮). Of course push this map 

into 𝛭𝛵 . Hence 𝑙𝑎𝑏𝑒𝑙  of 𝑥 that is 𝑝𝑜𝑠𝑏  ∪
𝑝𝑜𝑠𝑅(𝑎,𝑥) . If there are many values we will 

produce 𝑝𝑜𝑠 as the same number of values. 

4. If 𝐶 is ∃𝑅. 𝐵(𝑎), we should do the same steps 

as ∀𝑅. 𝐵(𝑎) . The only difference is we just 

produce a new 𝑝, and make the 𝑝𝑜𝑠𝑏  as [p, i] (i 

is the position in the values are founded). 

There is an example to explain how to get the label 

about complicated exist and all axioms. 𝛺 is a triple of 

(𝑖𝑛, 𝑛𝑔, 𝛤), which is exclusively marked by 𝜃. 𝜃 is an 

element from 𝐿𝑠𝐶 . In this triple, 𝑖𝑛 is the individual 

contained in the concept which 𝛺 represents. 

𝑖𝑛 ∶= {𝑑 | 𝑑 ℎ𝑎𝑠 𝑡ℎ𝑒 𝑓𝑜𝑟𝑚 𝑙𝑖𝑘𝑒 (𝑎, 𝑙𝑎𝑏𝑒𝑙), 𝑎 ∈ 𝜃}  
(3) 

ng is individual excluded from the concept which 𝛺 

represents. 

𝑛𝑔 ∶= {𝑑 | 𝑑 ℎ𝑎𝑠 𝑡ℎ𝑒 𝑓𝑜𝑟𝑚 𝑙𝑖𝑘𝑒 (𝑎, 𝑙𝑎𝑏𝑒𝑙), 𝑎 ∈ ¬𝜃} 
(4) 

As we know, an ABox axiom has its DNF like 

𝐶1
𝑖  ⊔  ⋯ ⊔ 𝐶𝑚𝑖

𝑖 , where 𝐶𝑗
𝑖 = 𝐶𝑗1

𝑖 ⊓ ⋯ ⊓ 𝐶𝑗𝑡

𝑖 . Hence, we 

can decompose them as following: 

1. If 𝐶𝑗𝑡

𝑖  is an atomic concept 𝐴, and its instance is 

𝑎, then add (𝑎, 𝑙𝑎𝑏𝑒𝑙𝑎) into the set 𝑖𝑛𝐴. 

2. If 𝐶𝑗𝑡

𝑖  is an negation of atomic concept ¬𝐴, and 

its instance is 𝑎, then add (𝑎, 𝑙𝑎𝑏𝑒𝑙𝑎) into the set 

𝑛𝑔𝐴. 

3. Import the newly generated (𝑎, 𝑙𝑎𝑏𝑒𝑙) from ∀ 

and ∃  when producing the 𝑙𝑎𝑏𝑒𝑙  process 

according to 1 and 2. 

Now we would make a concept as the example. The 

examples are as follows: 

Example 2. {
[1]

𝐴(𝑎) ,
[2]

¬𝐴(𝑏) ,
[3]

∀𝑅.𝐴(𝑎)
,

[4]

∃𝑅.𝐵(𝑎)
,

[5]

𝑅(𝑎,𝑐)
} 

Then we will get that (𝑎, [1,0])  and 

(𝑐, {[3,0], [5,0]})  into 𝑖𝑛𝐴 . (𝑏, [2,0])  into 𝑛𝑔𝐴 , 

(𝑑, [4,0]) into 𝑖𝑛𝐵. 

What should be careful about is that for ⊤ and ⊥, all 

the individuals from previous 𝐼𝑛𝐷 need to be extracted 

into 𝑖𝑛⊤ and 𝑛𝑔⊥. 

Terminology γ can be set as Ω possessed with the 

role which is generated on the basis of conceptional 

relation. label is the position of the relation about γ 

and Ω. t is inclusion symbol or equivalence symbol. 

True about f represents θγ is atomic and false about f 

represents θγ is the negation of atomic concept. 

𝑡 ∶=⊑ |  ≡ 

𝑓 ∶= 𝑡𝑟𝑢𝑒 | 𝑓𝑎𝑙𝑠𝑒 

𝛾 ∶=  𝛺, 𝑙𝑎𝑏𝑒𝑙, 𝑓, 𝑡.             (5) 

Now we need to use 𝐶 as the concepts of the right 

hand of TBox axioms. We can get 𝛩𝛺 for the concept 

name of Ω , and 𝛩𝛺 𝛾  for the concept name of 𝛺 𝛾 . 

Hence, we can use 𝛤 to express the set of 𝛾. 

Γ: =  {𝛾 | Θ𝛺 ∗ 𝐶, 𝑎𝑛𝑑  ΘΩ γ  ∈  𝐴𝑡𝑜𝑚(𝐶) 𝑎𝑛𝑑 ∗ 𝑖𝑠 ⊑

 𝑜𝑟 ≡}                                     (6) 

After the definition, here begins the operation for 

every 𝛩𝛺 ∈ 𝐿𝑠𝐶. 

We can let s denote the Ω num. For every single  

                             𝑈𝐶 = {𝛺1, … , 𝛺𝑖}                                    (7) 

here comes the analysis for every condition listed as 

follows. 

If 𝑡  was extracted as 𝑡0. We will choose 𝐴 as the 

left concept of every TBox axioms, choose 𝐶 as the 

right concepts of every TBox axioms and choose 

𝜃 ∈ 𝐴𝑡𝑜𝑚 (𝐶). For any TBox axiom 𝐶 = 𝐶1 ⊔ ⋯ ⊔ 𝐶𝑚, 

where 𝐶𝑖 = 𝐶𝑖1 ⊓ ⋯ ⊓ 𝐶𝑖𝑛𝑖
, (1 ≤ 𝑖 ≤ 𝑚).  

1. If  𝐶𝑖𝑗 (1 ≤ 𝑗 ≤ 𝑛𝑖)  is an atomic concept. We 

need to get 𝐴  as 𝜃𝛾 , and make 

γ(Ω𝐶𝑖𝑗
, 𝑙𝑎𝑏𝑒𝑙𝐶𝑖𝑗

, true , 𝑡0). 

2. If 𝐶𝑖𝑗 is the negation of atomic concept. We need 

to get 𝐴 as 𝜃𝛾 , and 

make 𝛾(𝛺𝐴𝑡𝑜𝑚(𝐶𝑖𝑗), 𝑙𝑎𝑏𝑒𝑙𝐶𝑖𝑗
, 𝑓𝑎𝑙𝑠𝑒  , 𝑡0). 

3. If  𝐶𝑖𝑗 has the form ∀𝑅. 𝐷 or ∃𝑅. 𝐷, we need to 

extract all elements like (𝑎, 𝑙𝑎𝑏𝑒𝑙) of 𝑖𝑛𝐴, and 

use it into ∀𝑅. 𝐷(𝑎)  or ∃𝑅. 𝐷(𝑎) and 

decompose the ∀𝑅. 𝐷(𝑎)  or ∃𝑅. 𝐷(𝑎) 

according to the previous rules. The 𝑙𝑎𝑏𝑒𝑙𝐷  also 

need to add into the new instance’s label. 

We also list an example to show what we do.  

It is necessary to clarify the structure of 𝛺 after the 

decomposition. 

𝛺: = (𝛩, 𝑖𝑛, 𝑛𝑔, 𝛤).                            (8) 

D. Extract Contradiction 

The main method of extracting contradiction is that for 

every 𝛺𝑖, we not only test its internal in, ng, but also 

implement a contradiction detection for Ω𝑗 which has 

equivalence and inclusion with 𝛺𝑖 . After the test, an 

extract will follow. The combination of all contradiction 

sets will be defined as 𝛤 . The function to obtain 

contradiction could be defined as getConf(t1,t2, label). t1 

and t2 respectively represents set that has the same type 

as in and ng. Every element inside the set contains a, 

label. The contradiction rules can be further explained in 

Table III. 

TABLE III. GETCONF 

𝑙𝑎𝑏𝑒𝑙𝑟 = 𝑙𝑎𝑏𝑒𝑙, 𝑡 =  ∅, 𝑎𝑟 = ∅; 
for all the A ∈ t1 do 

    for all the B ∈ t2 do  

        if 𝑎𝐴 =  𝑎𝐵 then  

            𝑙𝑎𝑏𝑒𝑙𝑟 = 𝑙𝑎𝑏𝑒𝑙; 
            𝑎𝑟 = ∅; 

            𝑙𝑎𝑏𝑒𝑙𝑟 =  𝑙𝑎𝑏𝑒𝑙𝑟  ∪ 𝑙𝑎𝑏𝑒𝑙𝐴  ∪ 𝑙𝑎𝑏𝑒𝑙𝐵; 

            𝑎𝑟 = 𝑎𝐴; 

            t = t ∪  { (𝑎𝑟, 𝑙𝑎𝑏𝑒𝑙𝑟)}; 

return t; 
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We can use the algorithm getConf to get conflict of in 

and ng in a 𝛺. Above this, the getAllConf algorithm 

which to get a Ω's contradiction can be stated in the 

following Table IV: 

TABLE IV. GETALLCONF 

C = Ω , t = ∅ , fs =  f, label = labelc  

if(fs == true) then  

  tfg = ng; 

else  

  tfg = in; 

t = getConf(t1, tfg , label); 

forall the γ ∈  Γi  do 

  𝑓𝑡 =  𝑓𝛾;  

  if(𝑓𝑠 ==  𝑡𝑟𝑢𝑒) then  

ft = ¬ fγ;  

   t = t ∪ getAllConf(t1 , γ , label ∪ labelγ , ft); 

  if(tγ  == ≡ ) then  

    t = t ∪ getAllConf(t1 , γ , label ∪ labelγ , ft); 

return t; 

 

If we want to get all contradiction. we would extract 

𝛺𝑖 for UCT. For the extracted 𝛺𝑖, internal contradiction 

filter will be implemented which is 𝛺𝑖. 

𝑔𝑒𝑡𝐴𝑙𝑙𝐶𝑜𝑛𝑓(𝑖𝑛𝑖 , 𝛺𝑖 , 𝑝𝑜𝑠𝛺𝑖
, 𝑡𝑟𝑢𝑒). 

E. Merge Contradiction Vector 

The contradiction vector is set as 𝑠𝑡 =  ⋃ label and 

label is consists of a set of 𝑝𝑜𝑠. Hence, a contradiction 

vector can also be expressed as {𝑝𝑜𝑠}. In other words, in 

order to get the final contradiction we need to implement 

a merge on 𝑝𝑜𝑠. 

Given that all axioms have its pos  according to 

advanced rules, the length of every pos is 3. The first 

number represents the location of axioms of 𝒩 , the 

second number represents the position of the disjunction 

of axioms. And the third number represents the position 

of concept's position in conjunction form. By this way, 

we can set the third number in all groups as 0 due to our 

mere purpose of getting a contradiction. This represents 

if we has a pos like [x, y, z], we can directly let the list 

of z to 0 like [x, y, 0]. 

F. Contradiction Ranking 

After getting all newly generated contradiction vector, 

a rank will take place for all of those contradiction vector 

inside of ⋃st. The following is the ranking rule: 

1. The internal x and y will be ranked in ascending 

order. 

2. After this, we compare all contradiction vector in 

terms of its first contradiction and still rank x and 

y in ascending order. And the less contradiction 

the contradiction vector has, the closer to the front 

its place is. 

G. Generate Inconsistent Subsets: 

Generate inconsistent subsets follows the rules below: 

1. Select contradiction vector sti ranking the first as 

well as its contradiction pos1 = [x, yn,0](yn ≠ 0) 

that requires merge. Also select contradiction 

vector stj that ranks at the first place and the 

contradiction requires merge into pos2 = [x, yn + 1, 

0] and merge as sti  = [x, {yn,yn+1}, 0]. Exclude 

the contradiction pos2 from stj. Then we will 

merge the rest into sti and replace pos1 with pos2. 

If pos2 can achieve merger according to 

contradiction vector merge, then a merge pos3 as 

[⋯ yn-1, 0] can be emerged. 

2. In the case of merger error or when the search has 

already been done, cancel merger and return to the 

previous step and look for the next contradiction 

vector. 

3. If the merger is finished, delete contradiction 

vector in current root node and then output the 

emerged inconsistent subsets ns to η . Repeat step 

1 to 2 afterwards. 

H. Filter Minimal Inconsistent Subsets 

If 𝑛𝑠𝑖 ⊑  𝑛𝑠𝑗, remove 𝑛𝑠𝑗 by traversing ⋃{𝑛𝑠𝑖  = 𝜂}. 

The final 𝜂 is the output goal. 

IV. RELATED WORK 

There has been a lot of work to compute minimal 

inconsistent subsets in the description logic. Here are 

some researches having addressed this question. In [5] 

the author provides explanations as proof fragments 

based on standard structural subsumption algorithms for 

the CLASSIC KR system. A glass-box method was 

described in [6]. The author provides non-standard 

reasoning services facilitating the debugging of logically 

incoherent DL terminologies and algorithms to calculate 

them. Another research is [7], for the calculation of 

minimal unsatisfiability preserving subterminologies, the 

author develops two different algorithms, one 

implementing a bottom-up approach using support of an 

external description logic reasoner, the other 

implementing a specialized tableau-based calculus. In [8], 

an algorithm is presented for computing all MUPS. Glass 

box and black box [9] are used to collect a MUPS, and 

then other MUPS is deduced on the basis [10]. 

V. CONCLUSION 

To conclude, through the decomposition and 

abstraction on ALC, this paper uses sub clause and 

merging contradiction to obtain overall minimal 

inconsistent subsets. This paper is a preliminary report of 

our study on effective algorithms for computing all 

maximal contractions in description logic. Our current 

focus is about optimizing the implementation of this 

algorithm. A plan of evaluating the algorithm on the 

basis of several available ontologies will also be 

conducted quite soon in the near future. 
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