
An Algorithm for Computing All Minimal

Inconsistent Subsets in Description Logic

Liang Dong, Jie Luo, and Huiyuan Xie
State Key Laboratory of Software Development Environment, School of Computer Science and Engineering, Beihang

University, Beijing, China

Email: {dongliang, luojie, xiehuiyuan}@nlsde.buaa.edu.cn

Abstract—This paper investigates the problem of computing

all maximal contractions of a given ontology (set of ABox

and TBox axioms) with respect to a consistent set of ABox

axioms in description logics. Based on this concept of

minimal inconsistent subsets which was introduced in our

previous paper, an algorithm for computing all minimal

inconsistent subsets of a given ontology is proposed. Then

all maximal contractions can be computed by using the

R-subtraction algorithm which was also proposed in our

previous paper. 

Index Terms—description logic, maximal contractions,

minimal inconsistent subsets, R-Calculus

I. INTRODUCTION

In the study of belief and knowledge base revision,

one basic problem is to deduce or compute contractions

[1], which are closely related to revision by the Levi and

Harper identities. This paper focuses on the computation

of contractions of a specific kind, called maximal

contractions (or R -contractions) in description logics

(DLs). Maximal contractions, first introduced in [2],

were defined in first-order logic as maximal subsets of a

formula set Γ, which are consistent with a consistent set

Δ of atomic formulas and negations of atomic formulas.

In this paper, we shall introduce the concept of

maximal contraction into DLs and propose an algorithm

for computing all maximal contractions of a given DL

ontology with respect to a given set of ABox axioms

based on computation of minimal inconsistent subsets.

This paper will be elaborated with more details in the

following sections. In Section 2, we will present the

formal definition of all concepts and introduce the formal

problem addressed in this paper. In Section 3, we

propose an algorithm for computing all maximal

contractions. Section 4 will have a general conclusion

regarding all concepts, problem and algorithm stated in

previous sections.

II. PRELIMINARIES

Firstly, it is necessary to consider the description logic

𝐴𝐿𝐶 . For the convenience of the conduction on our

algorithm, a concept name can be denoted by 𝐴, 𝐶 and

Manuscript received January 1, 2017; revised June 27, 2017.

𝐷 can represent arbitrary concepts, and 𝑅 can denote a

role name. Concepts in 𝐴𝐿𝐶 are formed with the

following syntax:

C, D ∶= ⊤ | ⊥ | A | C ⊓ D | C ⊔ D | ¬C | ∃R. C | ∃R. C.

 (1)

Individual names can be denoted by 𝑎, 𝑏 . ABox

axioms have the form 𝐶(𝑎) or 𝑅(𝑏, 𝑐) and TBox

axioms have the form 𝐶 ⊑ 𝐷 or 𝐶 ≡ 𝐷.

Another case is that 𝐶 can be a set comprising of

ABox and TBox axioms while 𝐷 be a consistent ABox.

Maximal contractions of 𝐶 with respect to 𝐷 is defined

as maximal subsets of C which are consistent with D, i.e.

subsets of C which are consistent with D and there are no

other subsets which subsume these sets and are also

consistent with 𝐷. In our previous work [3], we defined

the concept of minimal inconsistent subsets that is

closely related to maximal contractions. Minimal

inconsistent subsets (MISs) of an inconsistent set are

subsets which are inconsistent themselves but can

become consistent by removing any formula in them. It

is proved that maximal contractions can be computed

from minimal inconsistent subsets based on the GFMC

framework [4]. Thus, we only need to find a way to

effectively compute minimal inconsistent subsets of any

given set of ABox and TBox axioms.

III. ALGORITHMS FOR COMPUTING ALL MISS

The following shows how to enumerate all MISs by

firstly decomposing and then reconstructing ABox and

TBox axioms.

A. Conversion

And now we set 𝑁 as the set of Abox and TBox

axioms. Suppose that 𝑁𝑅 , NT and 𝑁𝑐 are the set of

relations, the set of TBox axioms and the set of concepts

of 𝑁 respectively. As described above, we should firstly

convert all concepts of ABox axioms and concepts on the

right hand side of TBox axioms in 𝑁 into NNF and then

into DNF based on the following rules.

Negative Normal Form To proceed, we let 𝛢 be an

atomic concept and 𝐵, 𝐶 be concepts. The conversion of

concepts to NNFs is as shown in Table I.

For a ABox axiom 𝐶(𝛼), C will be converted into

NNF. For a TBox axiom of the form 𝐴 ⊑ 𝐶 (inclusion)

Lecture Notes on Information Theory Vol. 5, No. 1, June 2017

34©2017 Lecture Notes on Information Theory
doi: 10.18178/lnit.5.1.34-38

or 𝐴 ≡ 𝐶 (equality), only the concept C will be

converted into NNF.

TABLE I. CONCEPTS CONVERSION

A A

¬A ¬A

¬(B ⊓ C) ¬B ⊔ ¬C

¬(B ⊔ C) ¬B ⊓ ¬C

¬¬B B

¬∀R. B ∃R. ¬B

¬∃R. B ∀R. ¬B

Disjunctive Normal Form After converting the

concepts of ABox axioms and concepts on the right hand

side of TBox axioms into NNF, the concepts of negative

normal form will be further converted into their

disjunctive normal forms as the following: 𝐶1
𝑖 ⊔ ⋯ ⊔

𝐶𝑚𝑖
𝑖 where 𝐶𝑗

𝑖 = 𝐶𝑗1
𝑖 ⊓ ⋯ ⊓ 𝐶𝑗𝑡

𝑖 is a conjunction of

atomic concepts, negations of atomic concepts, universal

restricted concepts, and existential restricted concepts.

We use function GetDNF to convert negative normal

forms into disjunctive normal forms.

1. If 𝐶𝑗𝑘
𝑖 (1 ≤ 𝑘 ≤ 𝑗) is an atomic concept which

has the form 𝐴(𝑎), then 𝐺𝐸𝑇𝐷𝑁𝐹(A(a)) = A(a);

2. If 𝐶𝑗𝑘
𝑖 is a negation of atomic concept which has

the form ¬𝐴(𝑎) , then 𝐺𝐸𝑇𝐷𝑁𝐹(¬A(a)) =
¬A(a);

3. If 𝐶𝑗𝑘
𝑖 has the form ∀𝑅. 𝐵 , then

𝐺𝑒𝑡𝐷𝑁𝐹(∀𝑅. 𝐵) = ∀𝑅. 𝐺𝑒𝑡𝐷𝑁𝐹(𝐵);

4. If 𝐶𝑗𝑘
𝑖 has the form ∃𝑅. 𝐵 , then

𝐺𝑒𝑡𝐷𝑁𝐹(∃𝑅. 𝐵) = ∃𝑅. 𝐺𝑒𝑡𝐷𝑁𝐹(𝐵).

B. Extract Individual and Concept Set

In order to distinguish different occurrences of the

same individual name 𝛼 in 𝛮, we use the pair (𝛼, 𝑝𝑜𝑠)

to denote an occurrence of 𝛼, where 𝑝𝑜𝑠 is the position

of the occurrence. Let the 𝛭𝛵 as the maptables for the

𝑝𝑜𝑠. We shall use function 𝐶𝑎𝑙𝑝𝑜𝑠 as follow to get the

𝑝𝑜𝑠 for every axiom. And we shall use a concept 𝐶

which is a DNF to get the 𝑝𝑜𝑠. Let 𝑗 to be the position

of a conjunction include 𝐶 in this DNF. Let t be the

position of 𝐶 in this conjunction. If this conjunction

only has one item, let 𝑡 = 0. And we will make a DNF

to be a group to find its position. Let the 𝑖 is this

axiom’s position in the 𝛮. We shall set the 𝑛𝛼 = [𝑖] as

the adventage number. The number of subsequent will

get through the 𝐶𝑎𝑙𝑝𝑜𝑠.

1. If the 𝑖 -th axioms in 𝛮 is of the form 𝐷 (a),

𝐶 ⊑ 𝐷, or 𝐶 ≡ 𝐷, then 𝑝𝑟𝑒𝐷 = [𝑖].
2. If 𝐶 is an atomic concept, negation of atomic

concept, universal restricted concept, or

existential restricted concept in a DNF 𝐷, then

𝑝𝑜𝑠𝐶 = 𝑝𝑟𝑒𝐷@[𝑗, 𝑡].
3. If ¬𝐶 is a negation of atomic concept, then

𝑝𝑜𝑠𝐶 = 𝑝𝑜𝑠¬𝐶 .

4. If 𝐷 is a DNF in ∀𝑅. 𝐷 or ∃𝑅. 𝐷 , then

𝑝𝑟𝑒𝐷 = [𝑥] (x is not any axioms's position in

the 𝛮), and then 𝛭𝛵 push back the 𝑝𝑜𝑠∃𝑅.𝐷 →
 [𝑥, 0] (or 𝑝𝑜𝑠∀𝑅.𝐷 → [𝑥, 0]).

And then, we get the 𝑝𝑜𝑠. We will get the sequence

of number to represent a 𝑝𝑜𝑠. And the first number

means the location of 𝛮. After that, every two number

can be a group to marked this 𝐶 location in a DNF.

The set of all occurrences of 𝑎 is denoted as

𝑑𝑎 :
= {(𝑎, 𝑝𝑜𝑠)|𝑝𝑜𝑠 is the position of an occurrence of 𝑎}

(2)

TABLE II. A

𝐴(𝑎) 𝑎

¬𝐴(𝑎) 𝑎

⊥ 0

⊤ 0

𝑅(𝑎, 𝑏) 𝑎, 𝑏

∀𝑅. 𝐴(𝑎) 𝑎

∃𝑅. 𝐴(𝑎) 𝑎

Individual names 𝑎 can be extracted from ABox

axioms according to rules shown in Table II, in the table

above, 0 suggests no individual name needed to be

extracted and the individual names 𝑎, 𝑏 in 𝑅(𝑎, 𝑏) has

the same position. Hence, the set of individuals 𝐼𝑛𝐷 is

⋃{𝑑𝑎}

𝑎

where a is an individual name.

The set of atomic concepts can be extracted based on

the following rules,

1. If Α is an atomic concepts, 𝐴𝑡𝑜𝑚(𝛢) = {𝛢}.

2. 𝐴𝑡𝑜𝑚¬𝛣 = 𝐴𝑡𝑜𝑚𝛣.
3. 𝐴𝑡𝑜𝑚(𝛣 ∗ 𝐶) = 𝐴𝑡𝑜𝑚(𝛣) ∪ 𝐴𝑡𝑜𝑚(𝐶) , where ∗

is ⊔, ⊓, ⊑ or ≡.

4. 𝐴𝑡𝑜𝑚(∀𝑅. 𝛣) = 𝐴𝑡𝑜𝑚(𝛣).
5. 𝐴𝑡𝑜𝑚(∃𝑅. 𝛣) = 𝐴𝑡𝑜𝑚(𝛣).

we shall use 𝜃 to denote atomic concept. Hence, the

set of atomic concepts of 𝛣 is Atom(Β) and the set

𝐿𝑠𝐶 of all atomic concepts in 𝛮 is

⋃ 𝐴𝑡𝑜𝑚(𝐵).

𝐵∈𝑁

C. Decomposition

In this section we need decompose the concepts

from 𝛮. We will use 𝛺 to denote the set that named by

an atomic concept. There are two aspects in the process

of decomposition. The first aspect is the decomposition

of individual, while the second one is filtering the

relevant 𝛺.
Individual Before decomposing the individual, we

import 𝑙𝑎𝑏𝑒𝑙 for the source of an individual which

determine where this individual is from. label is

exclusively remarked by 𝑝𝑜𝑠 of a list of concepts. We

need the rules to get the individual 𝑙𝑎𝑏𝑒𝑙 where 𝐶 for

the example.

1. If 𝐶 is an atomic concept, its 𝑙𝑎𝑏𝑒𝑙 is its 𝑝𝑜𝑠.

Lecture Notes on Information Theory Vol. 5, No. 1, June 2017

35©2017 Lecture Notes on Information Theory

XTRACTION OF A FROM BOX E

2. If 𝐶 is a negation of atomic concept, its 𝑙𝑎𝑏𝑒𝑙
also is its 𝑝𝑜𝑠.

3. If 𝐶 is ∀𝑅. 𝐵(𝑎), we should find all 𝑅 relations

about 𝑅(𝑎, 𝑥) (𝑥 is the variable value which from

𝐼𝑛𝐷), and then make a new axiom as 𝐵(𝑥) and

make its new 𝑝𝑜𝑠𝑏 as [𝑝, 0] (p is the new

𝑝𝑜𝑠 not occurs in 𝛮). Of course push this map

into 𝛭𝛵 . Hence 𝑙𝑎𝑏𝑒𝑙 of 𝑥 that is 𝑝𝑜𝑠𝑏 ∪
𝑝𝑜𝑠𝑅(𝑎,𝑥) . If there are many values we will

produce 𝑝𝑜𝑠 as the same number of values.

4. If 𝐶 is ∃𝑅. 𝐵(𝑎), we should do the same steps

as ∀𝑅. 𝐵(𝑎) . The only difference is we just

produce a new 𝑝, and make the 𝑝𝑜𝑠𝑏 as [p, i] (i

is the position in the values are founded).

There is an example to explain how to get the label

about complicated exist and all axioms. 𝛺 is a triple of

(𝑖𝑛, 𝑛𝑔, 𝛤), which is exclusively marked by 𝜃. 𝜃 is an

element from 𝐿𝑠𝐶 . In this triple, 𝑖𝑛 is the individual

contained in the concept which 𝛺 represents.

𝑖𝑛 ∶= {𝑑 | 𝑑 ℎ𝑎𝑠 𝑡ℎ𝑒 𝑓𝑜𝑟𝑚 𝑙𝑖𝑘𝑒 (𝑎, 𝑙𝑎𝑏𝑒𝑙), 𝑎 ∈ 𝜃}
(3)

ng is individual excluded from the concept which 𝛺

represents.

𝑛𝑔 ∶= {𝑑 | 𝑑 ℎ𝑎𝑠 𝑡ℎ𝑒 𝑓𝑜𝑟𝑚 𝑙𝑖𝑘𝑒 (𝑎, 𝑙𝑎𝑏𝑒𝑙), 𝑎 ∈ ¬𝜃}
(4)

As we know, an ABox axiom has its DNF like

𝐶1
𝑖 ⊔ ⋯ ⊔ 𝐶𝑚𝑖

𝑖 , where 𝐶𝑗
𝑖 = 𝐶𝑗1

𝑖 ⊓ ⋯ ⊓ 𝐶𝑗𝑡

𝑖 . Hence, we

can decompose them as following:

1. If 𝐶𝑗𝑡

𝑖 is an atomic concept 𝐴, and its instance is

𝑎, then add (𝑎, 𝑙𝑎𝑏𝑒𝑙𝑎) into the set 𝑖𝑛𝐴.

2. If 𝐶𝑗𝑡

𝑖 is an negation of atomic concept ¬𝐴, and

its instance is 𝑎, then add (𝑎, 𝑙𝑎𝑏𝑒𝑙𝑎) into the set

𝑛𝑔𝐴.

3. Import the newly generated (𝑎, 𝑙𝑎𝑏𝑒𝑙) from ∀

and ∃ when producing the 𝑙𝑎𝑏𝑒𝑙 process

according to 1 and 2.

Now we would make a concept as the example. The

examples are as follows:

Example 2. {
[1]

𝐴(𝑎) ,
[2]

¬𝐴(𝑏) ,
[3]

∀𝑅.𝐴(𝑎)
,

[4]

∃𝑅.𝐵(𝑎)
,

[5]

𝑅(𝑎,𝑐)
}

Then we will get that (𝑎, [1,0]) and

(𝑐, {[3,0], [5,0]}) into 𝑖𝑛𝐴 . (𝑏, [2,0]) into 𝑛𝑔𝐴 ,

(𝑑, [4,0]) into 𝑖𝑛𝐵.

What should be careful about is that for ⊤ and ⊥, all

the individuals from previous 𝐼𝑛𝐷 need to be extracted

into 𝑖𝑛⊤ and 𝑛𝑔⊥.

Terminology γ can be set as Ω possessed with the

role which is generated on the basis of conceptional

relation. label is the position of the relation about γ

and Ω. t is inclusion symbol or equivalence symbol.

True about f represents θγ is atomic and false about f

represents θγ is the negation of atomic concept.

𝑡 ∶=⊑ | ≡

𝑓 ∶= 𝑡𝑟𝑢𝑒 | 𝑓𝑎𝑙𝑠𝑒

𝛾 ∶= 𝛺, 𝑙𝑎𝑏𝑒𝑙, 𝑓, 𝑡. (5)

Now we need to use 𝐶 as the concepts of the right

hand of TBox axioms. We can get 𝛩𝛺 for the concept

name of Ω , and 𝛩𝛺 𝛾 for the concept name of 𝛺 𝛾 .

Hence, we can use 𝛤 to express the set of 𝛾.

Γ: = {𝛾 | Θ𝛺 ∗ 𝐶, 𝑎𝑛𝑑 ΘΩ γ ∈ 𝐴𝑡𝑜𝑚(𝐶) 𝑎𝑛𝑑 ∗ 𝑖𝑠 ⊑

 𝑜𝑟 ≡} (6)

After the definition, here begins the operation for

every 𝛩𝛺 ∈ 𝐿𝑠𝐶.

We can let s denote the Ω num. For every single

 𝑈𝐶 = {𝛺1, … , 𝛺𝑖} (7)

here comes the analysis for every condition listed as

follows.

If 𝑡 was extracted as 𝑡0. We will choose 𝐴 as the

left concept of every TBox axioms, choose 𝐶 as the

right concepts of every TBox axioms and choose

𝜃 ∈ 𝐴𝑡𝑜𝑚 (𝐶). For any TBox axiom 𝐶 = 𝐶1 ⊔ ⋯ ⊔ 𝐶𝑚,

where 𝐶𝑖 = 𝐶𝑖1 ⊓ ⋯ ⊓ 𝐶𝑖𝑛𝑖
, (1 ≤ 𝑖 ≤ 𝑚).

1. If 𝐶𝑖𝑗 (1 ≤ 𝑗 ≤ 𝑛𝑖) is an atomic concept. We

need to get 𝐴 as 𝜃𝛾 , and make

γ(Ω𝐶𝑖𝑗
, 𝑙𝑎𝑏𝑒𝑙𝐶𝑖𝑗

, true , 𝑡0).

2. If 𝐶𝑖𝑗 is the negation of atomic concept. We need

to get 𝐴 as 𝜃𝛾 , and

make 𝛾(𝛺𝐴𝑡𝑜𝑚(𝐶𝑖𝑗), 𝑙𝑎𝑏𝑒𝑙𝐶𝑖𝑗
, 𝑓𝑎𝑙𝑠𝑒 , 𝑡0).

3. If 𝐶𝑖𝑗 has the form ∀𝑅. 𝐷 or ∃𝑅. 𝐷, we need to

extract all elements like (𝑎, 𝑙𝑎𝑏𝑒𝑙) of 𝑖𝑛𝐴, and

use it into ∀𝑅. 𝐷(𝑎) or ∃𝑅. 𝐷(𝑎) and

decompose the ∀𝑅. 𝐷(𝑎) or ∃𝑅. 𝐷(𝑎)

according to the previous rules. The 𝑙𝑎𝑏𝑒𝑙𝐷 also

need to add into the new instance’s label.

We also list an example to show what we do.

It is necessary to clarify the structure of 𝛺 after the

decomposition.

𝛺: = (𝛩, 𝑖𝑛, 𝑛𝑔, 𝛤). (8)

D. Extract Contradiction

The main method of extracting contradiction is that for

every 𝛺𝑖, we not only test its internal in, ng, but also

implement a contradiction detection for Ω𝑗 which has

equivalence and inclusion with 𝛺𝑖 . After the test, an

extract will follow. The combination of all contradiction

sets will be defined as 𝛤 . The function to obtain

contradiction could be defined as getConf(t1,t2, label). t1

and t2 respectively represents set that has the same type

as in and ng. Every element inside the set contains a,

label. The contradiction rules can be further explained in

Table III.

TABLE III. GETCONF

𝑙𝑎𝑏𝑒𝑙𝑟 = 𝑙𝑎𝑏𝑒𝑙, 𝑡 = ∅, 𝑎𝑟 = ∅;
for all the A ∈ t1 do

 for all the B ∈ t2 do

 if 𝑎𝐴 = 𝑎𝐵 then

 𝑙𝑎𝑏𝑒𝑙𝑟 = 𝑙𝑎𝑏𝑒𝑙;
 𝑎𝑟 = ∅;

 𝑙𝑎𝑏𝑒𝑙𝑟 = 𝑙𝑎𝑏𝑒𝑙𝑟 ∪ 𝑙𝑎𝑏𝑒𝑙𝐴 ∪ 𝑙𝑎𝑏𝑒𝑙𝐵;

 𝑎𝑟 = 𝑎𝐴;

 t = t ∪ { (𝑎𝑟, 𝑙𝑎𝑏𝑒𝑙𝑟)};

return t;

Lecture Notes on Information Theory Vol. 5, No. 1, June 2017

36©2017 Lecture Notes on Information Theory

We can use the algorithm getConf to get conflict of in

and ng in a 𝛺. Above this, the getAllConf algorithm

which to get a Ω's contradiction can be stated in the

following Table IV:

TABLE IV. GETALLCONF

C = Ω , t = ∅ , fs = f, label = labelc

if(fs == true) then

 tfg = ng;

else

 tfg = in;

t = getConf(t1, tfg , label);

forall the γ ∈ Γi do

 𝑓𝑡 = 𝑓𝛾;

 if(𝑓𝑠 == 𝑡𝑟𝑢𝑒) then

ft = ¬ fγ;

 t = t ∪ getAllConf(t1 , γ , label ∪ labelγ , ft);

 if(tγ == ≡) then

 t = t ∪ getAllConf(t1 , γ , label ∪ labelγ , ft);

return t;

If we want to get all contradiction. we would extract

𝛺𝑖 for UCT. For the extracted 𝛺𝑖, internal contradiction

filter will be implemented which is 𝛺𝑖.

𝑔𝑒𝑡𝐴𝑙𝑙𝐶𝑜𝑛𝑓(𝑖𝑛𝑖 , 𝛺𝑖 , 𝑝𝑜𝑠𝛺𝑖
, 𝑡𝑟𝑢𝑒).

E. Merge Contradiction Vector

The contradiction vector is set as 𝑠𝑡 = ⋃ label and

label is consists of a set of 𝑝𝑜𝑠. Hence, a contradiction

vector can also be expressed as {𝑝𝑜𝑠}. In other words, in

order to get the final contradiction we need to implement

a merge on 𝑝𝑜𝑠.

Given that all axioms have its pos according to

advanced rules, the length of every pos is 3. The first

number represents the location of axioms of 𝒩 , the

second number represents the position of the disjunction

of axioms. And the third number represents the position

of concept's position in conjunction form. By this way,

we can set the third number in all groups as 0 due to our

mere purpose of getting a contradiction. This represents

if we has a pos like [x, y, z], we can directly let the list

of z to 0 like [x, y, 0].

F. Contradiction Ranking

After getting all newly generated contradiction vector,

a rank will take place for all of those contradiction vector

inside of ⋃st. The following is the ranking rule:

1. The internal x and y will be ranked in ascending

order.

2. After this, we compare all contradiction vector in

terms of its first contradiction and still rank x and

y in ascending order. And the less contradiction

the contradiction vector has, the closer to the front

its place is.

G. Generate Inconsistent Subsets:

Generate inconsistent subsets follows the rules below:

1. Select contradiction vector sti ranking the first as

well as its contradiction pos1 = [x, yn,0](yn ≠ 0)

that requires merge. Also select contradiction

vector stj that ranks at the first place and the

contradiction requires merge into pos2 = [x, yn + 1,

0] and merge as sti = [x, {yn,yn+1}, 0]. Exclude

the contradiction pos2 from stj. Then we will

merge the rest into sti and replace pos1 with pos2.

If pos2 can achieve merger according to

contradiction vector merge, then a merge pos3 as

[⋯ yn-1, 0] can be emerged.

2. In the case of merger error or when the search has

already been done, cancel merger and return to the

previous step and look for the next contradiction

vector.

3. If the merger is finished, delete contradiction

vector in current root node and then output the

emerged inconsistent subsets ns to η . Repeat step

1 to 2 afterwards.

H. Filter Minimal Inconsistent Subsets

If 𝑛𝑠𝑖 ⊑ 𝑛𝑠𝑗, remove 𝑛𝑠𝑗 by traversing ⋃{𝑛𝑠𝑖 = 𝜂}.

The final 𝜂 is the output goal.

IV. RELATED WORK

There has been a lot of work to compute minimal

inconsistent subsets in the description logic. Here are

some researches having addressed this question. In [5]

the author provides explanations as proof fragments

based on standard structural subsumption algorithms for

the CLASSIC KR system. A glass-box method was

described in [6]. The author provides non-standard

reasoning services facilitating the debugging of logically

incoherent DL terminologies and algorithms to calculate

them. Another research is [7], for the calculation of

minimal unsatisfiability preserving subterminologies, the

author develops two different algorithms, one

implementing a bottom-up approach using support of an

external description logic reasoner, the other

implementing a specialized tableau-based calculus. In [8],

an algorithm is presented for computing all MUPS. Glass

box and black box [9] are used to collect a MUPS, and

then other MUPS is deduced on the basis [10].

V. CONCLUSION

To conclude, through the decomposition and

abstraction on ALC, this paper uses sub clause and

merging contradiction to obtain overall minimal

inconsistent subsets. This paper is a preliminary report of

our study on effective algorithms for computing all

maximal contractions in description logic. Our current

focus is about optimizing the implementation of this

algorithm. A plan of evaluating the algorithm on the

basis of several available ontologies will also be

conducted quite soon in the near future.

ACKNOWLEDGMENT

This research is supported by State Key Laboratory of

Software Development Environment (Grand No.

SKLSDE-2015ZX-22).

Lecture Notes on Information Theory Vol. 5, No. 1, June 2017

37©2017 Lecture Notes on Information Theory

REFERENCES

[1] C. E. Alchourrn, P. Grdenfors, and D. Makinson, “On the logic of
theory change: Partial meet contraction and revision functions,”

The Journal of Symbolic Logic, vol. 50, no. 2, pp. 510–530, 1985.

[2] W. Li, “A logical framework for evolution of specifications,” in
Proc. of Programming Languages and Systems, 1994, pp. 394–

408.

[3] J. Luo and W. Li, “An algorithm to compute maximal
contractions for Horn clauses,” Science China - Information

Sciences, vol. 54, no. 2, pp. 244–257, 2011.

[4] J. Luo, “A general framework for computing maximal
contractions,” Frontiers of Computer Science, vol. 7, no. 1, pp.

83–94, 2013.
[5] D. L. McGuinness, A. Borgida, D. L. Mcguinness, D. L.

Mcguinness, D. D. Alex, and E. Borgida, “Explaining reasoning

in description logics,” Technical report, 1996.
[6] S. Schlobach and R. Cornet, “Non-standard reasoning servives for

the debugging of description logic terminologies,” Proceedings of

IJCAI, 2003.

[7] S. Schlobach, Z. Huang, R. Cornet, and F. V. Harmelen,

“Debugging incoherent terminologies,” Journal of Automated

Reasoning, vol. 39, no. 3, pp. 317–349, 2007.
[8] A. Kalyanpur, B. Parsia, E. Sirin, and J. Hendler, “Debugging

unsatisfying classes in owl ontologies,” Journal of Web Semantics,

vol. 3, no. 4, pp. 268-293, 2007.
[9] F. Bacchus and G. Katsirelos, Finding a Collection of MUSes

Incrementally, 2016.

[10] M. H. Liffiton, A. Previti, A. Malik, and J. Marques-Silva, “Fast,
flexible mus enumeration,” Constraints, pp. 1–28, 2015.

Liang Dong was born in Shanxi Province, P.

R. China in 11 March, 1992. Dong obtained

his B.Sc. of computer science and
engineering in July 2014 at Beihang

University, Beijing, China.

He is currently studying on his Master degree
of computer engineering at Beihang

University, Beijing, China. His current

research interests include: mathematical logic
and artificial intelligence.

Jie Luo was born in Hunan province, P. R.
China in 14 October, 1981. Luo obtained

B.Sc. of mathematics in July 2003 at School

of Mathematic Science, Peking University,
Beijing, China. Luo obtained Ph.D. of

engineering in January 2012 at School of

Computer Science and Engineering, Beihang
University, Beijing, China.

He is currently a Lecturer in School of

Computer Science and Engineering, Beihang
University, Beijing, China. He studied in Department of Computer

Science & Engineering, University of Washington from October 2007

to October 2008 as Visiting Scientist. His current research interests
include: mathematical logic, knowledge reasoning, formal methods,

and artificial intelligence.

Dr. Luo is a Young AE of Frontiers of Computer Science and reviewer
of the Computer Journal, Science China – Information Sciences, etc.

Huiyuan Xie was born in Shanxi province,

P.R. China in 8 December, 1993. Xie
obtained her B.Sc. of computer science and

engineering in July 2014 at Beihang

University, Beijing, China.
She is currently studying on her Master

degree of computer engineering at Beihang

University, Beijing, China. Her current
research interests include: mathematical logic

and artificial intelligence.

Lecture Notes on Information Theory Vol. 5, No. 1, June 2017

38©2017 Lecture Notes on Information Theory

