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Abstract—In constructive geometry, implicit blends with 

blend range parameters are important in constructing a 

complex surface because they limit the blend surface within 

specified regions and deform primitive locally after blending. 

However, because they behave like Max or Min blend in 

non-blending regions, their primitives always have similar 

sizes of subsequent blend surfaces when used as a primitive 

in sequential blends. To solve this problem, this paper 

proposes union blends that provide each primitive an 

additional parameter to adjust a primitive’s subsequent 

blending range in later blends; thus, primitives are able to 

individually adjust the sizes of their subsequent blends by 

varying the values of the additional parameters. In addition, 

a generalized method is proposed to develop the proposed 

union blends with C1 continuity from an existing blend. 
 

Index Terms—implicit surface, implicit blends, constructive 

geometry 
 

I. INTRODUCTION 

In Constructive geometry of implicit surfaces, 

primitive implicit surfaces are defined as 1 level surface 

of a defining function. Defining functions determine the 

shapes of primitives, which can be found in [1]-[6]. A 

complex surface is then constructed easily from primitive 

surfaces, such as planes, ellipsoids, skeletal primitives, 

etc. by implicit blends. A blend connects and joins 

primitives with transitions generated automatically to 

smooth out unwanted sharp edges and creases. Existing 

blends in Constructive geometry in the literature are 

reviewed as follows: 

 Max and Min functions offer pure union and 

intersection [7]. Because they are C
0
 continuous 

only, they always generate non-smooth surfaces.  

 Super-ellipsoidal blends [7] offered union and 

intersection blends of high-order continuity by 

simulating pure union and intersection blends. But 

they always deform primitives totally. 

 To deform primitives locally after blending, 

blends with blending range parameters with C
1
 

continuity were developed in [8], [9]. The scale 

method [8] especially provides high-dimensional 

blends to blend over two primitives in a single 

blending operator. The range parameters limit the 
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blend surface within specified regions, so the size 

of the transition of the resulting blend can be 

adjusted by varying range value and primitives are 

deformed locally. In addition, high-degree 

continuous blend with blending range parameters 

was also proposed in [6]. 

Regarding existing blends with blending range 

parameters, denoted as Bk(f1,...,fk), in Constructive 

geometry, they make primitives behave like Max(f1,...,fk) 

or Min(f1,...,fk) in non-blending regions after blending. 

This causes the following problem: 

When they are used as a new primitive in sequential 

blends, for example B2(Bk(f1,...,fk), fk+1)=1 with range 

parameters r1 and r2 for Bk and fk+1, Bk(f1,...,fk) is unable to 

have an individual blending range control on the 

subsequent blends of f1,..., and fk with fk+1. This is, 

primitives f1,..., and fk, always have similar sizes of 

subsequent blending surfaces with fk+1, controlled only by 

r1 for each of f1,..., and fk and r2 for fk+1. 

To conquer this problem, this paper proposes new 

binary union blends, denoted as BU2(f1, f2), that not only 

provide range parameters r1 and r2 but also offer 

parameters m1 and m2 to make primitives behave like 

Max(f1
1/m1

, f2
1/m2

) or Min(f1
1/m1

, f2
1/m2

) in non-blending 

regions after blending. As a result, in sequential blends 

such as B2(BU2(f1,f2), f3)=1 with range parameters r1 and r2 

for BU2 and f3, the sizes of subsequent blends of 

primitives f1 and f2 with f3 can be adjusted by varying r1, 

r2 and m1 for f1 and r1, r2 and m2 for f2. Hence, m1 and m2 

can be viewed as subsequent blend range parameters 

respectively for primitives f1 and f2, and the shape of 

blend surface BU2(f1, f2) will not change no matter what 

values m1 and m2 are set. Moreover, a generalized method 

is also proposed to develop the kind of blends stated 

above with C
1
 continuity from an existing blend. 

The remainder of this paper is organized as follows. 

Section II introduces related works and describes the 

problem more precisely. Section III presents the proposed 

blends. Section IV describes the applications of the 

proposed blends. Conclusion is given in Section V. 

II. RELATED WORKS 

In this section, implicit surfaces in Constructive 

geometry are defined first, then implicit blends are 

introduced, and finally their problem is described. 
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A. Implicit Primitive Surface 

In Constructive geometry [7], a primitive implicit 

surface is defined using a defining function 

f(x,y,z):R
3
R+ and represented by a level surface  

{(x,y,z)R
3 
| f(x,y,z)=1} 

which is denoted as fi(x,y,z)=1 or fi=1 for short in this 

paper and R+[0, ]. In the literature, many defining 

functions were proposed as listed below: 

 Planes :      f(x,y,z)=|[x,y,z] |/a, v

where  means dot product,  is a unit normal vector v

toward the plane, a>0 controls the shortest Euclidean 

distance from the plane to the origin. 

 Superellipsoids:  f(x,y,z)=(|x/a|
n
+|y/b|

n
+|z/c|

n
)

1/n
 

where parameters a, b and c decide the axial lengths of x, 

y, and z of the shape f(x,y,z)=1 [10]. 

 Superquadrics:  

f(x,y,z)=((|x/a|
n1

+|y/b|
n1

)
n2/n1

+|z/c|
n2

)
1/n2

 

where n1>1 and n2>1 are curvature parameters to control 

the shape of f(x,y,z)=1 [2], [5]. 

 Skeletal primitives: f(x,y,z)=d/Id 

where d is the shortest Euclidean distance from the point 

(x,y,z) to a given skeleton: a point, line segment, polygon 

or solid skeleton and Id is a specified influential radius [3]. 

Fig. 1 displays some shapes of f(x,y,z)=1 defined using 

the above functions. 

 

Figure 1. (a). Shapes of (|x|n+|y|n+|z|n)1/n =1 where n varies from 2, 3, 5, 
10, and 20. (b). Shapes of two super-quadrics. (c). Shape of a skeletal 

primitive (circular cylinder). 

B. Implicit Blends 

Furthermore, a complex implicit surface is given by a 

blend Bk(f1,...,fk), which is defined from primitive implicit 

surfaces fi(x,y,z)=1, i=1,...,k, via a blending operator 

Bk(x1,..., xk): 𝑅+
𝑘  R+ by: 

Bk(f1,...,fk)=1 

The boundary of Bk(f1,...,fk)=1 is called a blend surface. 

Blending operator Bk(x1,...,xk) is to generate transitions 

tangent to primitives, which connects fi=1 smoothly to 

erase sharp edges and corners as shown in Fig. 2(b). 

 

Figure 2. (a). A pure union Min of two cylinders, containing sharp 

edges. (b). A union blend of two cylinders, containing smooth transition 
generated automatically to remove sharp edges. 

In the literature about Constructive geometry, boolean 

set blending operators, including, including union, 

intersection and difference, are listed below. 

1) Pure union and intersection with C
0 
continuity [7] 

BAk(x1,...,xk)=Min(x1,...,xk) and BSk(x1,...,xk)=Max(x1,...,xk) 

They generate non-smooth surfaces as shown from the 

intersection in Fig. 3(b) because of only C
0 
continuity. 

 

Figure 3. (a). Planes. (b)-(c). Intersection of 3 pairs of parallel planes in 
(a) by BSk(f1,f2,f3)=1; (b). Sharp edges are generated because of using 

Max; (c). The planes are deformed totally because of using super-

ellipsoidal intersection; (d). The planes are deformed locally because of 
using an intersection blend from the scale method. 

2) Super-ellipsoidal union and intersection [7] 

BAk(x1,...,xk)=(x1
-p

+...+xk
-p

)
1/-p

 and  BSk(x1,...,xk)=(x1
p
+...+xk

p
)

1/p
 

where p is a curvature parameter to adjust the shape of 

the transition of the resulting blend surface. These blends 

provide high-order continuity and hence generate smooth 

surfaces, but they always deform blended primitives 

totally as shown in Fig. 3(c). 

Furthermore, a difference blending operator BDk(x1, 

x2...,xk) can be obtained from an intersection operator 

BSk(x1, x2..., xk) by 

BDk(x1, x2...,xk)=BSk(x1, 1/x2...,1/xk), 

BDk(f1, f2...,fk)=1 subtracts f1=1 from f2=1,..., and fk=1. 

3) The scale method [8] 

To make primitives deform locally like that in Fig. 

3(d), the scale method was proposed to develop blends 

with range parameters. For example, given an existing 

union blending operator Hk(x1,…,xk)=  ∑ [1 − 𝑥𝑖/
𝑘
𝑖=1

𝑟𝑖]+
𝑝𝑖 -1=0 on fi0 with range parameters ri, i=1,...,k, the 

scale method can develop a union blending operators 

BAk(x1,…,xk) which maps R+
k
 to R and possesses C

1
 

continuity for constructive geometry by : 

        𝐵𝐴𝑘 = {
     ℎ𝑝                                

𝑀𝑖𝑛(𝑥1, … , 𝑥𝑘)    
𝑀𝑖𝑛(𝑥1, … , 𝑥𝑘) > 0 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        (1) 

where hpT
-1

(0), 

T(h)=Hk(x1/h-1,…,xk/h-1)=∑ [(1 + 𝑟𝑖 − 𝑥𝑖 ℎ⁄ )/𝑟𝑖
𝑘
𝑖=1 ]+

𝑝𝑖-1 

and ri>0 and pi>1, for i=1,...,k. 

Intersection blends from the scale method can be found 

in [8]. Equation (1) offers parameters pi to adjust the 

shapes of the transitions; it also provide range parameters 

ri to adjust the size of the transition and to make 

primitives deform locally after blending as shown on the 

region inside the box in Fig. 4. In addition, they can be 

used to generate sequential blends on overlapping 

blending regions, too. 

In fact, BAk(f1,...,fk) in (1) behaves similar to Min(f1,...,fk) 

on non-blending regions, this leads to: 
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 A advantage:  

Primitives f1,..., and fk do not change properties after 

blending or in later sequential blends. 

 A disadvantage: 

     

Figure 4. Union blends of two cylinders BA2(f1,f2)=1 in (1), where the 
transitions have different sizes by setting ranges ri different values to 

limit the transition located within the box and to make primitives f1 and 

f2 deform locally within the box, too. 

 

Figure 5. (a). Left: A union BA2(f1, f2)=1 on cylinders; Right: A toroid 
f3=1. (b). Sequential Union BA2(BA2(f1,f2), f3)=1 by (1) from the scale 

method, where f1 and f2  always  have similar subsequent blends with the 

toroid f3. (c). Sequential unions BA2(BU2(f1,f2), f3)=1 by the proposed 
blend from (2) in Section 3, which enables f1 and f2 to have different 

sizes of subsequent blends with the toroid f3, pointed by arrows. 

The advantage also incurs a disadvantage that in 

sequential blends such as B2(Bk(f1, ..., fk), fk+1)=1 with 

blend range r1 for Bk in B2, primitives f1, …, and fk in Bk 

always have the same blending range r1 to blend with fk+1 

in B2. Consequently, primitives f1, ..., and fk always have  

similar sizes of subsequent blend surfaces with fk+1. This 

can be seen in Fig. 5(b) where f1.and f2 always have the 

same blend range with f3 because of using (1) and so 

f1.and f2 have similar blends with f3. That is, in B2(Bk(f1, ..., 

fk), fk+1)=1, BAk(f1, ..., fk) in (1) from the scale method does 

not offer f1,..., and fk subsequent blend range parameters 

to control their individual blend with fk+1 in B2 without 

deforming the blending surfaces Bk(f1, …, fk)=1 like that 

in Fig. 5(c) where f1 and f2 are able to individually adjust 

the sizes of their subsequent blend surfaces with f3 and 

have different sizes and the blend surface around the 

intersection region of cylinders keep unchanged. 

To solve the problem, Section 3 proposes new blends 

that offer each primitive an individually adjustable range 

parameter to adjust the size of its subsequent blend with 

other primitives in later blends, and more importantly the 

blend surface never changes whatever values the 

parameters are set. For example, in BA2(BA2(f1, f2), f3)=1 in 

Fig. 5(c), f1 and f2 in BA2 can have different sizes of blend 

surfaces with f3 by setting the parameters different values 

and the blend surface BA2(f1,f2)=1 keeps unchanged. 

III. BLENDS WITH INDIVIDUALLY ADJUSTABLE 

PRIMITIVES’ SUBSEQUENT BLEND RANGE 

PARAMETERS 

This section presents a generalized method that can 

develop a new binary union blend from an existing blend 

to conquer the problem stated at the end of Section II. 

From the method, a binary blend with C
1
 continuity is 

developed later.  

A. The Generalized Method 

To solve a problem similar to that stated in Section II 

for Zero implicit surface fi(x,y,z)=0, union blend BT2(f1, f2) 

=0 in [11] enables primitives f1 and f2 to behave like f1/m1 

and f2/m2 after blending and hence in sequential blends 

such as Bk(BT2(f1, f2), f3,…, fk+1)=0, one can individually 

adjust parameter mi of BT2, i=1 to 2, to control the sizes of  

fi’s successive blends with f2, …, and fk. However, BT2(f1, 

f2) unfortunately applies only to zero implicit surface 

fi(x,y,z)=0, where BT2(f1, f2) and fi(x,y,z) all are defined to 

map to real-valued spaces, so it does not apply to 

constructive geometry fi(x,y,z)=1 because fi(x,y,z) and 

their blending operators are required to map to non-

negative spaces as stated in Section II. Even so, this paper 

still extends the idea in [11] and the scale method and 

then develop a generalized method which can create a 

new binary union blends, denoted as BU2(f1, f2)=1 for 

Constructive geometry, from an existing blend such that 

BU2(f1, f2) enables primitives f1 and f2 to behave like f1
1/m1

 

and f2
1/m2

 after blending. As a result, each mi of BU2, i=1 

to 2, can be viewed as a fi’s subsequent blending range 

parameter to control the size of fi’s subsequent blend. The 

generalized method includes two steps, described as 

follows: 

Step (1): Choose a base curve H2(x1,x2)=0 defined 

piecewise by an existing union operator HA2(x1,x2)=0 on 

fi=0, with blending range parameters r1 and r2 tangent to 

Min(x1,x2)-1=0. More precisely, the former curve is an 

arc-shaped curve tangent to the latter one at points (1, 

1+r2) and (1+r1, 1), as in Fig. 6. 

 

Figure 6. Base curve H2(x1, x2)=0. 

Step (2): Define a union operator BU2(x1,x2):R
2
R+ 

with blending range parameters r1>0 and r2>0 and 

parameters m1>0 and m2>0 from the base curve 

H2(x1,x2)=0 in Step (1) by: 

                 𝐵𝑈2(𝑥1, 𝑥2) = {

𝑥1
1/𝑚1

𝑥2
1/𝑚2

ℎ𝑝

    
𝑥2 ≥ ℎ1

𝑥1 ≥ ℎ2

Otherwise

              (2) 

where hp is the root h of the equation T(h)=0 for any (x1, 

x2), and 
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T(h)=HA2(x1/(h
m1),  x2/(h

m2)), 

         h1=(1+r2)( 𝑥1
𝑚2/𝑚1)  and  h2=(1+r1)( 𝑥2

𝑚1/𝑚2).
 

Some properties of BU2(f1(x,y,z), f2(x,y,z)) in (2) are 

analyzed in the following: 

(1). Whatever positive values m1 and m2 are set, the 

blending curve BU2(x1,x2)=1, i.e. hp=1, is always the same 

as the base curve H2(x1,x2)=0 with blending ranges r1 and 

r2 and hence the blend surface BU2(f1,f2)=1 is always the 

same union blend of surfaces f1=1 and f2=1, whose shape 

remains unchanged. This is shown from the union blend 

of intersecting cylinders BU2(f1,f2)=1 in Fig. 7, whose 

shape remains unchanged for m=0.1, 0.5 0.8, 1, 1.4 to 1.8. 

 

Figure 7. Sequential unions BA2(BU2(f1,f2), f3)=1 by (2) of BU2(f1, f2)=1 , 
intersecting cylinders, and f3=1, a toroid. Varying m2 in BU2(f1, f2) for f2 

from 0.1, 0.5 0.8, 1, 1.4 to 1.8 make the subsequent blends of f2 with f3 

enlarging gradually without changing the shape of the transition on the 
intersecting region between cylinders as shown in surfaces from top left 

to bottom right. 

(2). Every level curve of BU2(x1,x2)=h, h>0, can be 

viewed as the base curve H2(x1,x2)=0 whose x1 axis and x2 

axis are scaled by h
m1

 and h
m2

, respectively. This tells that 

every surface BU2(f1, f2)=h, h>0, can be considered as a 

union blend surface of surfaces f1/h
m1=1 and f2/h

m2=1 with 

blending ranges ri, i=1 and 2. Consequently, BU2(f1,f2) can 

be used as a new primitive in other blends to generate 

sequential blends with overlapping blending regions. 

Especially, in non-blending regions BU2(f1,f2) is the same 

as 

                          Min(f1
(1/m1)

, f2
(1/m2)

) 

That is, f1and f2 in BU2(f1, f2)=l in non-blending regions 

behaves the same as 

fi
(1/mi)=l   fi=l

mi 

It follows that if mi<mj and l>1, level surface f
(1/mi)=l 

dilates less than f
(1/mj)=l as shown from f2 in Fig. 8; and if 

mi<mj and l<1, f
(1/mi)=l shrinks less as shown from f2 in Fig. 

9. 

 

Figure 8. Level surfaces of a union of two cylinders by BU2(f1, f2)=l with 

m1=1 and m2=0.25 for l=1, 1.2, 1.4 and 1.6; On all of them, f2 dilates 
less than f1 because of m2=0.25. 

 

Figure 9. Level surfaces of a union of two cylinders by BU2(f1, f2)=l with 

m1=1 and m2=0.25 for l=1, 0.8, 0.6 and 0.4; on all of them, f2 shrinks 
less than f1 because of m2=0.25. 

(3). When BU2 is used as a new primitive in another 

added-material blend, such as BA2(BU2(f1,f2), f3)=1 where 

the blend range for BU2 in BA2  is set ra, varying m1 and m2 

in BU2 enables primitives f1 and f2 to have different 

blending ranges 

       (1+ra)
mi-1, i=1 and 2              

to blend with f3 in BU2. 

As mi increases from 1, the blending range of fi with f3 

is getting larger from ra and so the resulting (added-

material) blend surface is getting bigger, too. As mi 

decrease from 1, the blending range of fi with f3 is getting 

smaller from ra to 0 so the resulting blend surface gets 

smaller. These can be found from the blend pointed by an 

arrow which is getting larger as mi increases in Fig. 7. 

(5). When BU2 is used as a new primitive in another 

subtracted-material blend, such as BD2(BU2(f1,f2), f3)=1 

where the blend ranges for BU2 in BD2  are set ra, varying 

m1 and m2 in BU2 enables primitives f1 and f2 to have 

different blending ranges 

     1-(1-ra)
mi, i=1 and 2                       

to blend with f3 in BD2. 

As mi increases from 1, the blending range of fi with f3 

increases from ra and so the resulting (subtracted-material) 

blend surface shrinks more. As mi decrease from 1, the 

blending range of fi with f3 decreases from ra and so the 

resulting blend shrinks less. 

In addition, when mi i=1 and 2, both are set 1, Equation 

(2) is similar to binary blends of the scale method. 

However, the major deference between BU2(f1,f2) in (2) 

and BA2(f1,f2) in (1) is that when BU2 is used as a new 

primitive in sequential blends, m1 and m2 in BU2 can be 

viewed as additional range parameters to adjust the 

subsequent added-material or subtracted-material blends 

of primitive f1 and f2 with other primitives, which solves 

the problem stated in the end of Section II. 

B. Differentiable Blending Operators 

To ensure that BU2(x1,x2) in (2) is exactly a function, 

we need to find an arc-shaped curve HA2(x1,x2) such that 

there exists a unique root hp of T(h)=0 for any (x1,x2). In 

fact, many existing union blending operators on zero 

implicit surfaces satisfy this requirement and so can be 

used as a base curve in Step (1) in Section III.A, such as 

Hoffmann’s conic blend [12], Middleditch’s elliptic 

blends [13] and super-ellipsoidal blends [14]. Now, 

Hoffmann’s conic blend HH(x1,x2)=0 is applied to develop 

BU2(x1,x2) and it is represented by 

HH(x1,x2)=r2
2
x1

2
+r1

2
x2

2
+r2

2
r1

2
-2r2

2
r1x1-2r1

2
r2x2+2px1x2 
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where -<p<r1r2. Thus, HA2(x1,x2)=0 in (2) can be given 

by HH(x1-1, x2-1)=0. Afterwards, a binary conic blending 

operator BU2 with range parameters r1 and r2 and 

curvature parameter p and parameters m1 and m2 to adjust 

the subsequent blends of f1 and f2 is given by: 

                  𝐵𝐴2(𝑥1, 𝑥2) = {

𝑥1
1/𝑚1

𝑥2
1/𝑚2

ℎ𝑝

    
𝑥2 ≥ ℎ2

𝑥1 ≥ ℎ2

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

            (3) 

where  

h1=(1+r2)( 𝑥1
𝑚2/𝑚1),  h2=(1+r1)( 𝑥2

𝑚1/𝑚2)
 

and hp is the root h of the equation T(h)=0 for any (x1, x2): 

T(h)=HH( x1/(h
m1

)-1,  x2/(h
m2

)-1) 

The root hp of the equation T(h)=0 can be solved by 

Newton-Ralphson numerical method and the value 

h=Min( x1
1/m1, x2

1/m2) is the initial guess for solving hp. 

C. Bulge Elimination 

Similar to that in [8], [14], [15], union blend BU2(f1, 

f2)=1 from (2) or (3) is able to perform bulge elimination 

by replacing ranges r1 and r2 with positive position 

functions Ri, i=1, 2 to make the values of r1 and r2 

approach 0 around the region cos 1 by 

Ri(x,y,z)=ri(G(x,y,z)+) 

where G(x,y,z) maps R
3

R
3
 to [0, 1], depending 

on which one of the following is used: 

                     G(x,y,z)=1-cos                          (4) 

                G(x,y,z)={(1 − 𝑐𝑜𝑠𝜃2)𝑛

1

   𝑐𝑜𝑠𝜃 ≥ 0
    Otherwise

            (5) 

And   is the angle between the gradients of f1 and f2 at 

the point (x,y,z), n>1 and   0. G(x,y,z) in (4) maps to [0, 

2]; G(x,y,z) in (5) maps to [0, 1] which can be used to 

avoid unwanted blends or to avoid changing the topology 

of a union blend of closed primitives like those stated in 

[15], [16]. 

However, on bulge elimination, BU2(f1,f2) along with Ri 

is almost similar to a pure union Min(f1
(1/m1)

, f2
(1/m2)

) 

around the region cos 1, where the value of G is close 

to zero. This means when m2m1, ||(f1
(1/m1)

)||
 
might vary 

dramatically to ||(f2
(1/m2)

)|| around cos1, and hence 

might cause computational errors in polygon-generation 

process. To reduce dramatic change in gradients, both the 

values of m1 and m2 are required to approach 1 around 

cos1, by replacing parameters mi, i=1 and 2, with 

position functions Mi(x,y,z), which maps R+
3
 to (1, mi) for 

mi>1 or (mi, 1) for mi>1, by 

Mi=1+(mi-1)V(x,y,z) 

where V(x,y,z) maps to [0,1], given by 

V(x,y,z)={(1 − 𝑐𝑜𝑠𝜃2)𝑛

1

    𝑐𝑜𝑠𝜃 ≥ 0
      Otherwise

 

and cos is the same as in Ri(x,y,z) above and parameter n 

controls the rate Mi varies from 1 to mi at. 

IV. APPLICATIONS 

BU2(f1, f2) in (3) can be integrated with other existing 

blends such as those of the scale method and super-

ellipsoidal blends. Its major applications are described 

below.  

A. Application to an Added-Material Blend 

When BU2(f1, f2) is used as new primitives in an added-

material blend, for example in BA2(BU2(f1,f2),f3), changing 

m1 and m2 of BU2 can adjust the individual blend range of 

f1 and f2 with f3 as shown from the blend of f2 with f3 in 

Fig. 9. Fig. 10(a) displays two sets of four connecting 

cylinders defined by fa=BA2(f4,BA2(f3,BA2(f2, f1)) and fb= 

BA2(f8,BA2(f7,BA2(f6, f5)), respectively. The blend surfaces 

of union BA2(fa, fb)=1 on the intersecting regions in Fig. 

10(b) always have similar sizes because of defining fa and 

fb using BA2 in (1). However, the three surfaces from left 

to right in Fig. 10(c) indicates that if fa=BU2(f4, BU2(f3, 

BU2(f2,f1)) and fb=BU2(f8,BU2(f7,BU2(f6,f5)) defined by (3) 

are used instead, then union BA2(fa, fb) can individually 

adjust the sizes of both the blend surfaces on the 

intersecting regions by setting both m1 for f4 in fa and f8 in 

fb  0.2, 1.2 and 1.8, respectively. 

B. Application to a Subtracted-Material Blend 

When BU2(f1, f2) is used as a subtracting or a subtracted 

operand in a difference blend, for example BD2(BU2(f1, f2), 

BU2(f3, f4)), changing m1 and m2 of BU2(f1, f2) can adjust 

the individual blend range (or the size) of the subtracted-

material blends of f1 and f2 from BU2(f3, f4). This can be 

seen in Fig. 11, which displays a difference blend of 

bigger intersecting cylinders BU2(f1, f2) in Fig. 11(a) from 

another one BU2(f3, f4) in Fig. 11(b), defined by BD2(BU2(f1, 

f2), BU2(f3, f4)). Setting 1.3 and 0.25 to m1 and m2 of both 

BU2 makes the edges of the walls between f2 and f4 thinner 

than that of the wall between f1 and f3, as shown in Fig. 

11(d). Fig. 11(c) shows the same blend as Fig. 11(d) does 

except BA2 is used instead of BU2 and so all the edges on it 

always have similar sizes. 

 

Figure 10. (a). Two sets of four connecting cylinders defined by 
fa=BA2(f4,BA2(f3,BA2(f2,f1)) and fb=BA2(f8,BA2(f7,BA2(f6,f5)). (b). Union BA2(fa, 

fb)=1 where the blend surfaces on both of the intersecting regions 

always have similar sizes because of defining fa and fb using BA2. (c). 
Unions BA2(fa, fb)=1, fa=BU2(f4, BU2(f3, BU2(f2,f1)) and fb=BU2(f8, BU2(f7, 

BU2(f6,f5)); the sizes of the intersecting cylinders of f4 and f8 on the 

surfaces from left to right are different because of defining fa and fb 
using BU2 and setting m1 for both f4 and f8 0.2, 1,2 and 1.8, respectively. 
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or  to [0, 2] 



 

 

Figure
 
11.

 
(a). Bigger intersecting cylinders by BU2(f1,

 
f2). (b). Smaller 

intersecting cylinders by BU2(f3,
 
f4). (c). Difference of the blend in (a) 

from the one in (b) by BD2(BU2(f1,
 
f2),

 
BU2(f3,

 
f4))

 
where m1=1.3

 
and 

m2=0.25 for both BU2

 
and hence the edges

 
of the walls

 
between f2

 
and f4, 

pointed by arrows, are
 
thinner

 
than the others. (d). The same difference 

as in (c) except that m1=1
 
and

 
m2=1 and hence all the edges have similar 

sizes.
 

V.
 

CONCLUSION
 

In Ricci’s constructive geometry, existing blends
 
with 

range parameters behave like
 
pure union or intersection, 

Max
 
or Min,

 
in non-blending regions. This

 
implies that

 

their primitives always have similar sizes of subsequent 

blending surfaces
 
in sequential blends. In order to solve 

the problem, this paper has proposed a generalized 

method
 
that is able to transform an existing union blend 

into a new binary union blend that
 


 

Provide primitives additional parameters m1

 
and 

m2

 
to individually

 
adjust

 
the blending range and 

the size of each primitive’s subsequent blend
 
in 

sequential blends, and especially the blend surface 

does not change no matter
 

what values the 

parameters are set.
 


 

Provide primitives range parameters to adjust the 

size of the transition
 

of each primitive’s blend 

surface and to make the
 
transition generated in a 

specified region such that primitives deform 

locally.
 


 

Are C
1 

continuous everywhere and so can be used 

as a new primitive in other blends to generate 

sequential blends with overlapping blending 

regions.
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