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Abstract—The studies of big data analytics has emerged due 

to the lack of data analysis methods, and storage problems 

with traditional database systems. Some big data 

applications require real time analysis, and there is time 

constraint to analyze for the applications. Various methods 

and have been proposed to overcome this difficulty. In this 

study, several architectures and applications for real-time 

big data analysis have been investigated and compared with 

each other in details. Valuable suggestions have been 

proposed for researchers working in real-time big data 

analytics.  

 

Index Terms—big data, real time analysis, real time big data 

architecture 

 

I. INTRODUCTION 

The big data defines data that are collected from 

different sources and grows quickly. The big data is 

expressed by variety, volume, velocity, veracity, value 

(5V).  Big data obtained from various sources such as 

social networks, sensors, financial transactions, health 

system, and telecommunication. Nowadays, it is quite 

difficult to storage, manage and analyze fast growing big 

data with traditional database systems [1]. For this reason, 

in literature, numerous different methods have been 

proposed for the analysis of big data.  

Also in some areas, big data have to be analyzed in 

real-time. There is a time constraint for real-time big data 

analysis and different architectures are applied for real-

time big data analysis.  

In this paper, several architectures and applications 

have been investigated to improve performance of real-

time big data analysis. The contribution of this paper is 

that the applications performed in different areas have 

been compared with each other, and some suggestions 

have been proposed for researchers working in real-time 

big data analytics. 

The rest of this paper is organized as follows, in 

section 2, proposed architecture and indexing methods to 

perform big data analysis in real time have been 

investigated, and in section 3 the implemented 
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applications to analyze big data in real time have been 

presented in details. 

II. ARCHITECTURES USED FOR REAL-TIME ANALYSIS 

OF BIG DATA  

Marz and Warren [2] proposed Lambda architecture 

that is illustrated in Fig. 1. The system has the ability to 

respond quickly with precomputed and indexed batch 

views. The Lambda architecture consists of three layers. 

These are batch, service and speed layers. The batch layer 

stores the master dataset and computes arbitrary functions 

on that master dataset. The service layer indexes the 

batch views. Thus, the system can respond effectively to 

desired query. The speed layer computes real time data 

that has not been processed by the batch layer to produce 

real time views. 
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Figure 1. Lambda architecture 

Twardowski and Ryzko [3] presented the multi-agent 

architecture for real-time big data analysis as shown in 

Fig. 2. In this architecture, each of agents which are 

autonomous and distributed is responsible for a particular 

job. The input data is processed as stream data. The 

stream is collected by stream receiver agents which are 

responsible for pre-processing. Finally, all the data is sent 

to the archiver and the stream processing agents. The 

agents are responsible for processing the new data in the 

batch layer and the speed layer respectively. In the batch 

processing the new data is stored to the Hadoop 
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Distributed File System (HDFS). The batch driver agents 

coordinate the computations. The batch worker agents 

create batch view by performing their assigned jobs. The 

speed layer works with a similar mechanism where 

stream processing agent assigns the jobs to appropriate 

worker agent. The worker agent creates the output of real 

time views. The service layer creates service agent if 

needed and collects the necessary data for this agent. The 

service agent is terminated when the request is completed. 
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Figure 2. Multi-agent big data analysis architecture 

Martínez-Prieto, Cuesta, Arias and Fernández [4] 

presented the Service-OnLine-Index-Data (SOLID) 

architecture for real-time analysis of big semantic data. In 

the architecture shown in Fig. 3. Real time operations and 

big semantic data operations are separated from each 

other. This provides efficiency for data management and 

processing. However, the approach requires the 

coordination of the two data stores. SOLID architecture 

consists of three tiers: content, merge and service. The 

content tier consists of online, index and data layers.  The 

ata layer is similar to batch layer of Lambda architecture. 

The index layer reduces the complexity of big data to 

make effective querying at real time. The online layer 

performs fast write and query operations of the real-time 

system. The merge tier ensures that the data at runtime is 

integrated with the big semantic data. The query 

processor module in the service tier collects and parses 

queries and creates dynamic pipeline to solve the queries. 
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Figure 3. SOLID architecture 
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Figure 4. AIS Architecture 

Mo and Wang [5] presented the Asynchronous Index 

Strategy (AIS) structure. This structure has shown high 

performance for time series real-time big data stream 

storage. AIS architecture, shown in Fig. 4, includes the 

utility part and strategy part. The connection properties 

within the strategy part define common actions such as 

creating a connection and query command. The rule 

module manages the mapping rules for database 

addresses from keywords. The mapper module maps the 

database addresses to database connections. The merging 

module is responsible for merging the query results. The 

strategy section consists of the writer and reader modules.  

The writer module is responsible for adding and 

updating on MongoDB [6] and the reader module is 

responsible for query requests. Insertion performance of 

AIS-based MongoDB is better than MongoDB sharding 

and single MongoDB. AIS-based MongoDB has 17 times 

better performance than MongoDB sharding cluster with 

200 million documents. 

Wang, Zhang, Gao and Xing [7] have proposed the 

Punt Log Structured Merge (pLSM), a variant of LSM-

Tree. In this model, LSM-Tree is used to improve writing 

performance and Cache Oblivious Look-ahead Array 

(COLA) is used to accelerate query response. In the 

experimental study, the performances of pLSM, B-Tree 

and LSM-Tree structures were compared. For random 

insertion and sequential insertion, pLSM has performed 

better than the other two methods. In order to evaluate the 

query performance, point query and range query were 

performed. According to query performance, performance 

of pLSM was near the best-performing B-tree method in 

point query. However, pLSM has shown poor 

performance in the range query. 

II. REAL-TIME BIG DATA ANALYSIS ARCHITECTURES 

In this section, real-time big data analysis applications 

on mobile, cloud and other environments have been 

examined. 

A. Applications in Cloud Environments 

Wang, Zhang, Zhang and Lim [8] have presented the 

Smart Traffic Cloud infrastructure shown in Fig. 5. This 

architecture allows the collection and management of 

traffic data. This infrastructure enables distributed and 
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parallel data management and analysis using the Map-

Reduce and ontology database. The proposed architecture 

has three layers. These are infrastructure, data 

processing/analysis and application layers. The 

infrastructure layer provides the cluster of server to high-

level modules and services. The data processing/analysis 

layer achieves meaningful results using machine learning 

algorithms such as analysis, clustering and classification. 

The application layer performs data send/receive, storage 

and administrator operations. An application of real-time 

traffic map has been implemented using the proposed 

architecture. In this application, users send the 

information of timestamp, their position using Global 

Positioning System (GPS), speed and acceleration. The 

master node creates job files receiving this data and adds 

these files to the queue. The master node generates job 

lists using this information and puts them in a job queue. 

Then, the global job scheduler sends each job to the 

appropriate work node. The work nodes extract some 

information using this data: (1) road segments according 

to users’ coordinates and direction of the user, (2) 

filtering invalid and erroneous speed and acceleration 

measurement, (3) speed of the user. 
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Figure 5. Smart traffic cloud architecture 

Yu, Jiang and Zhu [9] designed the RTIC-C for cloud-

based data mining for real-time traffic. RTIC-C provides 

the distributed data management service based on HDFS 

and HBase [10]. RTIC-C consists of four layers as shown 

in Fig. 6. These layers are resource layer, cloud 

infrastructure layer, mining virtualization layer and 

mining application layer. Resource layer integrates data 

incoming from different sources. The cloud infrastructure 

is based on Hadoop [11] and integrates distributed 

resources. The traffic data is described as key/value pairs 

and stored on HDFS or HBase. Distributed massive 

storage component distributes the data to different data 

nodes to provide reliability. The map-reduce parallel 

computing framework provides parallel computing for 

data processing on distributed sources. Open service 

provides to access the cloud environment. The mining 

virtualization layer provides the mining tools such as 

traffic jam detection, traffic signal control model. The 

mining application layer combines various services for 

mining and performs mining applications such as weather 

forecasting, discovery of restricted area and urban 

transport. 
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Figure 6. RTIC-C architecture 

B. Applications Using Mobile Technology 

Garzo, Benczur, Sidlo, Tahara and Wyatt [12] have 

presented distributed streaming algorithms and 

infrastructures for efficient processing of large-scale 

mobile data. In the system shown in Fig. 7, Storm [13] 

and S4 are used in the stream processing layer. Since the 

stream processing layer does not guarantee to store 

history information, a persistence module has been 

created to protect history data even in case of an error. In 

the system for caching and virtualization layers, 

Cassandra [14] was used because of its high throughput 

writing. User defined functions have been used in the 

mobile data processing layer to perform location 

estimation by collecting history data. According to 

experimental results, the proposed system provides low 

latency and high throughput for real time application 

based on motion prediction. 
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Figure 7. Mobility prediction architecture 

Zhao, Sun and Liao [15] have developed a system for 

the analysis of large-scale GPS data by combining Spring 

and Storm. They have implemented K-means algorithm 

on Storm. As shown in Fig. 8, the architecture includes 

data collecting part, data analysis part and data storage 

part. The data collector gathers the data and sends them to 
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the message queue of Kafka. The messages include time, 

longitude, latitude and other information. The proposed 

method almost doubles the performance for execution 

time. 
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Figure 8. Real time processing system for GPS data 

Jayawardhana, Kumara, Perera and Paranawithana [16] 

have presented the Kanthaka for the requirement of 

telecom operator. Kanthaka, shown in Fig. 9, can analyze 

30 million records per day. Kanthaka consists of front-

end layer and back-end layer. The front-end is used to 

define the promotions. The promotions in the database 

are converted into Cassandra queries in the compiler 

Record (CDR) data from the operator. The preprocessor 

stores the CDR data in the hashmap in memory module 

according to queries from the receiving front-end. The 

selection of the appropriate subscriber for particular 

promotions is carried out by the Periodic Eligibility 

Checking module. Experimental results show that the 

latency increases when the number of promotions in the 

database increases.  
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Figure 9. Kanthaka architecture 

C. Applications in Other Areas 

Mouro and Sarno [17] used Storm and Scalable 

Advanced Massive Online Analysis (SAMOA) [18] 

together. Architecture is shown in Fig. 10. SAMOA 

consists of processing item, processor and stream. The 

processing item wraps a processor to perform machine 

learning algorithms using nodes provided by the stream 

processing engine. Processor performs the machine 

learning algorithms. Stream is a connection and allows 

data exchange between processing items. The second 

component of the system is the stream processing engine 

called Apache Storm. In the implementation, "Skype" and 

"Normal" class data for training purposes were created. 

“Skype” class includes 50 Skype sessions data and 

“Normal” class contains other traffic data such as http, ftp. 

According to different experiments, Skype traffic is 

classified at accuracy rate of 90.05%. 

Yang, Liu, Zhang and Yang [19] have developed a 

Storm-based architecture that includes data creation, data 

processing, and data storage. In this architecture, 

RabbitMQ is used as the data generator and Cassandra is 

used as the distributed database. RabbitMQ receives 

incoming messages according to particular rules and 

transmits them to the appropriate recipients. Nginx, a 

high performance HTTP server, was used as a load 

balancer in the system. Nginx is responsible for providing 

a balanced workload for each processor.  

Bai [20] has presented a Hbase-based real-time search 

method for big log data. In the proposed method, flume 

agents collect log records from end users. ElasticSearch is 

used for the analysis and indexing of logs. In the 

experimental study, 7 GB log file containing 148.928.992 

log was used. They searched the “Bigdata” keyword, the 

number of total matched log events are 4375. The first 25 

results in the search are returned in 6 seconds. 

Bakır, Aydoğan, Aydın, Khodabakhsh, Arı and Ercan 

have presented a sensor based data validation solution 

[21]. 60.000 sensors located in the Tüpraş refinery create 

an average of one hundred thousand records per day. 

They have used Complex Event Processing (CEP) engine 

and Cassandra Query Language (CQL) which is a query 

tool similar to SQL language. In the study, it was shown 

that at 15,000 events/second, relations and measurement 

mistakes were detected and classified correctly. 

He, Lu and Swanson [22] have developed a real-time 

MapReduce scheduler. System has three components. 

These are admission controller, job dispatcher and 

feedback controller. The admission controller defines the 

sequence of tasks that should be given to resources. The 

job scheduler allows assigning new tasks to the worker 

nodes. The feedback controller provides that the input 

controller is up to date. In the experimental study, the 

proposed system was compared with the deadline 

constraint scheduler. It has been concluded that the 

recommended scheduler is better according to the 

feedback rate. 
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Figure 10. Storm/SAMOA architecture. 
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Singh, Guntuku, Thakur and Hota [23] developed a 

semi-real-time application to detect peer-to-peer botnet 

attacks via machine learning algorithms. System has three 

components: traffic sniffer module, feature extraction 

module, and machine learning module. The traffic sniffer 

module saves the packets and performs the pre-

processing phase. The feature extraction module obtains 

attributes using Apache Hive [24]. Mahout [25] was used 

in the machine learning module and the classification 

accuracy rate was 99.7% when random forest algorithm is 

used as classifier. 

The comparison of the architectures have been given in 

Table I.  

III. CONCLUSION 

In this study, architectures and applications of real-

time big data analytics have been investigated and 

compared with others. According to studies in different 

fields, big data applications need to be well organized in 

time-critical systems to let the system gain the ability to 

response in a short time.  
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