
A Comprehensive Analysis of Architectures and

Methods of Real-Time Big Data Analytics

Sinan AY
Department of Computer Engineering, Turkish Military Academy, Ankara, Turkey

Email: xsinanay@gmail.com

M. Ali Akçayol
Department of Computer Engineering, Gazi University, Ankara, Turkey

Email: akcayol@gazi.edu.tr

Abstract—The studies of big data analytics has emerged due

to the lack of data analysis methods, and storage problems

with traditional database systems. Some big data

applications require real time analysis, and there is time

constraint to analyze for the applications. Various methods

and have been proposed to overcome this difficulty. In this

study, several architectures and applications for real-time

big data analysis have been investigated and compared with

each other in details. Valuable suggestions have been

proposed for researchers working in real-time big data

analytics.

Index Terms—big data, real time analysis, real time big data

architecture

I. INTRODUCTION

The big data defines data that are collected from

different sources and grows quickly. The big data is

expressed by variety, volume, velocity, veracity, value

(5V). Big data obtained from various sources such as

social networks, sensors, financial transactions, health

system, and telecommunication. Nowadays, it is quite

difficult to storage, manage and analyze fast growing big

data with traditional database systems [1]. For this reason,

in literature, numerous different methods have been

proposed for the analysis of big data.

Also in some areas, big data have to be analyzed in

real-time. There is a time constraint for real-time big data

analysis and different architectures are applied for real-

time big data analysis.

In this paper, several architectures and applications

have been investigated to improve performance of real-

time big data analysis. The contribution of this paper is

that the applications performed in different areas have

been compared with each other, and some suggestions

have been proposed for researchers working in real-time

big data analytics.

The rest of this paper is organized as follows, in

section 2, proposed architecture and indexing methods to

perform big data analysis in real time have been

investigated, and in section 3 the implemented

Manuscript received February 10, 2017; revised June 26, 2017.

applications to analyze big data in real time have been

presented in details.

II. ARCHITECTURES USED FOR REAL-TIME ANALYSIS

OF BIG DATA

Marz and Warren [2] proposed Lambda architecture

that is illustrated in Fig. 1. The system has the ability to

respond quickly with precomputed and indexed batch

views. The Lambda architecture consists of three layers.

These are batch, service and speed layers. The batch layer

stores the master dataset and computes arbitrary functions

on that master dataset. The service layer indexes the

batch views. Thus, the system can respond effectively to

desired query. The speed layer computes real time data

that has not been processed by the batch layer to produce

real time views.

Speed layer

Batch layer
Serving layer

All data

Batch view

Batch view
B

New data

Real time view

Real time view

A

Query

Query

Figure 1. Lambda architecture

Twardowski and Ryzko [3] presented the multi-agent

architecture for real-time big data analysis as shown in

Fig. 2. In this architecture, each of agents which are

autonomous and distributed is responsible for a particular

job. The input data is processed as stream data. The

stream is collected by stream receiver agents which are

responsible for pre-processing. Finally, all the data is sent

to the archiver and the stream processing agents. The

agents are responsible for processing the new data in the

batch layer and the speed layer respectively. In the batch

processing the new data is stored to the Hadoop

Lecture Notes on Information Theory Vol. 5, No. 1, June 2017

7©2017 Lecture Notes on Information Theory
doi: 10.18178/lnit.5.1.7-12

Distributed File System (HDFS). The batch driver agents

coordinate the computations. The batch worker agents

create batch view by performing their assigned jobs. The

speed layer works with a similar mechanism where

stream processing agent assigns the jobs to appropriate

worker agent. The worker agent creates the output of real

time views. The service layer creates service agent if

needed and collects the necessary data for this agent. The

service agent is terminated when the request is completed.

Data store

(HDFS)

Archiver

agent

Batch processing

(YARN)

Batch driver

agent

Batch driver

agent

New data

stream

Receiver

agent

Batch

views

Batch

views

Batch

views

Real time

views

Real time

views

Batch

aggregator

agent

Real time

aggregator

agent

Service

agent

Process

Stream

Stream

processing

agent

Real time

calculation

Real time

worker

agent

Batch layer

Serving layer

Speed layer

Figure 2. Multi-agent big data analysis architecture

Martínez-Prieto, Cuesta, Arias and Fernández [4]

presented the Service-OnLine-Index-Data (SOLID)

architecture for real-time analysis of big semantic data. In

the architecture shown in Fig. 3. Real time operations and

big semantic data operations are separated from each

other. This provides efficiency for data management and

processing. However, the approach requires the

coordination of the two data stores. SOLID architecture

consists of three tiers: content, merge and service. The

content tier consists of online, index and data layers. The

ata layer is similar to batch layer of Lambda architecture.

The index layer reduces the complexity of big data to

make effective querying at real time. The online layer

performs fast write and query operations of the real-time

system. The merge tier ensures that the data at runtime is

integrated with the big semantic data. The query

processor module in the service tier collects and parses

queries and creates dynamic pipeline to solve the queries.

Dynamic

pipelinine

Query

processor

Filter

library

Service tier

Run time data

Online layer

Index layer

Big semantic

data

Data layer

Content tier

Parallelizable

Processing

Merge tier

Dump

Figure 3. SOLID architecture

Connection

traits

Connection

wrapper
Merger

Connection

pool
Mapper Rule

Utility

Router

Writer ReaderStrategy

Figure 4. AIS Architecture

Mo and Wang [5] presented the Asynchronous Index

Strategy (AIS) structure. This structure has shown high

performance for time series real-time big data stream

storage. AIS architecture, shown in Fig. 4, includes the

utility part and strategy part. The connection properties

within the strategy part define common actions such as

creating a connection and query command. The rule

module manages the mapping rules for database

addresses from keywords. The mapper module maps the

database addresses to database connections. The merging

module is responsible for merging the query results. The

strategy section consists of the writer and reader modules.

The writer module is responsible for adding and

updating on MongoDB [6] and the reader module is

responsible for query requests. Insertion performance of

AIS-based MongoDB is better than MongoDB sharding

and single MongoDB. AIS-based MongoDB has 17 times

better performance than MongoDB sharding cluster with

200 million documents.

Wang, Zhang, Gao and Xing [7] have proposed the

Punt Log Structured Merge (pLSM), a variant of LSM-

Tree. In this model, LSM-Tree is used to improve writing

performance and Cache Oblivious Look-ahead Array

(COLA) is used to accelerate query response. In the

experimental study, the performances of pLSM, B-Tree

and LSM-Tree structures were compared. For random

insertion and sequential insertion, pLSM has performed

better than the other two methods. In order to evaluate the

query performance, point query and range query were

performed. According to query performance, performance

of pLSM was near the best-performing B-tree method in

point query. However, pLSM has shown poor

performance in the range query.

II. REAL-TIME BIG DATA ANALYSIS ARCHITECTURES

In this section, real-time big data analysis applications

on mobile, cloud and other environments have been

examined.

A. Applications in Cloud Environments

Wang, Zhang, Zhang and Lim [8] have presented the

Smart Traffic Cloud infrastructure shown in Fig. 5. This

architecture allows the collection and management of

traffic data. This infrastructure enables distributed and

Lecture Notes on Information Theory Vol. 5, No. 1, June 2017

8©2017 Lecture Notes on Information Theory

parallel data management and analysis using the Map-

Reduce and ontology database. The proposed architecture

has three layers. These are infrastructure, data

processing/analysis and application layers. The

infrastructure layer provides the cluster of server to high-

level modules and services. The data processing/analysis

layer achieves meaningful results using machine learning

algorithms such as analysis, clustering and classification.

The application layer performs data send/receive, storage

and administrator operations. An application of real-time

traffic map has been implemented using the proposed

architecture. In this application, users send the

information of timestamp, their position using Global

Positioning System (GPS), speed and acceleration. The

master node creates job files receiving this data and adds

these files to the queue. The master node generates job

lists using this information and puts them in a job queue.

Then, the global job scheduler sends each job to the

appropriate work node. The work nodes extract some

information using this data: (1) road segments according

to users’ coordinates and direction of the user, (2)

filtering invalid and erroneous speed and acceleration

measurement, (3) speed of the user.

Application & Web

server

Application data

store

Administration &

Access control

Communication

interface

Application layer

Data processing/analysis layer

�. �.FilteringClusteringClassification

Infrastructure layer

Resource managerJob scheduler
Data management

framework

Cloud

Figure 5. Smart traffic cloud architecture

Yu, Jiang and Zhu [9] designed the RTIC-C for cloud-

based data mining for real-time traffic. RTIC-C provides

the distributed data management service based on HDFS

and HBase [10]. RTIC-C consists of four layers as shown

in Fig. 6. These layers are resource layer, cloud

infrastructure layer, mining virtualization layer and

mining application layer. Resource layer integrates data

incoming from different sources. The cloud infrastructure

is based on Hadoop [11] and integrates distributed

resources. The traffic data is described as key/value pairs

and stored on HDFS or HBase. Distributed massive

storage component distributes the data to different data

nodes to provide reliability. The map-reduce parallel

computing framework provides parallel computing for

data processing on distributed sources. Open service

provides to access the cloud environment. The mining

virtualization layer provides the mining tools such as

traffic jam detection, traffic signal control model. The

mining application layer combines various services for

mining and performs mining applications such as weather

forecasting, discovery of restricted area and urban

transport.

Traffic

prediction

Accident

detection

Restricted area

discovery

Urban

transportation mode

Social network

analysis

Mining application layer

Traffic jam

recognition

Traffic signal

control model

Missing data

imputation method

Incident detection

model

Mining virtualization layer

Distributed massive

storage

Map-reduce computing

framework
Open service

Cloud infrastructure layer

Hadoop cluster

Floating car

GPS data

Mobile phone

GPS data

Bus GPS

data

Storage

resource

Resource layer

Computing

resource

Figure 6. RTIC-C architecture

B. Applications Using Mobile Technology

Garzo, Benczur, Sidlo, Tahara and Wyatt [12] have

presented distributed streaming algorithms and

infrastructures for efficient processing of large-scale

mobile data. In the system shown in Fig. 7, Storm [13]

and S4 are used in the stream processing layer. Since the

stream processing layer does not guarantee to store

history information, a persistence module has been

created to protect history data even in case of an error. In

the system for caching and virtualization layers,

Cassandra [14] was used because of its high throughput

writing. User defined functions have been used in the

mobile data processing layer to perform location

estimation by collecting history data. According to

experimental results, the proposed system provides low

latency and high throughput for real time application

based on motion prediction.

User

history

Cell tower

statistics

collector

User

predictor
User defined functions

Data

aggregator

Abstract

processing

component

Input data

parser

Mobile data processing

 framework
Reporter

Java object

serialization
SerializationKryo

Persistent

key-value store
Caching

Storm

Streaming

S4
Persistence adapter

Persistence

Zookeeper ZeroMQ Disk Cassandra HBase JDBC

Figure 7. Mobility prediction architecture

Zhao, Sun and Liao [15] have developed a system for

the analysis of large-scale GPS data by combining Spring

and Storm. They have implemented K-means algorithm

on Storm. As shown in Fig. 8, the architecture includes

data collecting part, data analysis part and data storage

part. The data collector gathers the data and sends them to

Lecture Notes on Information Theory Vol. 5, No. 1, June 2017

9©2017 Lecture Notes on Information Theory

the message queue of Kafka. The messages include time,

longitude, latitude and other information. The proposed

method almost doubles the performance for execution

time.

GPS data

Storm Cluster

Kafka Cluster

Supervisor

Bolt

Spout

Real time processing module

Nimbus

Zookeeper

Figure 8. Real time processing system for GPS data

Jayawardhana, Kumara, Perera and Paranawithana [16]

have presented the Kanthaka for the requirement of

telecom operator. Kanthaka, shown in Fig. 9, can analyze

30 million records per day. Kanthaka consists of front-

end layer and back-end layer. The front-end is used to

define the promotions. The promotions in the database

are converted into Cassandra queries in the compiler

Record (CDR) data from the operator. The preprocessor

stores the CDR data in the hashmap in memory module

according to queries from the receiving front-end. The

selection of the appropriate subscriber for particular

promotions is carried out by the Periodic Eligibility

Checking module. Experimental results show that the

latency increases when the number of promotions in the

database increases.

 Eligible

 subscribes

Front end Promotion

database

Web user interface

for rule definition

.csv file reading

module

Preprocessor Compiler

Batch processor

(memory module)

Periodic eligibility

checking module

Cassandra

cluster

Promotion

CDR record

Back end

Figure 9. Kanthaka architecture

C. Applications in Other Areas

Mouro and Sarno [17] used Storm and Scalable

Advanced Massive Online Analysis (SAMOA) [18]

together. Architecture is shown in Fig. 10. SAMOA

consists of processing item, processor and stream. The

processing item wraps a processor to perform machine

learning algorithms using nodes provided by the stream

processing engine. Processor performs the machine

learning algorithms. Stream is a connection and allows

data exchange between processing items. The second

component of the system is the stream processing engine

called Apache Storm. In the implementation, "Skype" and

"Normal" class data for training purposes were created.

“Skype” class includes 50 Skype sessions data and

“Normal” class contains other traffic data such as http, ftp.

According to different experiments, Skype traffic is

classified at accuracy rate of 90.05%.

Yang, Liu, Zhang and Yang [19] have developed a

Storm-based architecture that includes data creation, data

processing, and data storage. In this architecture,

RabbitMQ is used as the data generator and Cassandra is

used as the distributed database. RabbitMQ receives

incoming messages according to particular rules and

transmits them to the appropriate recipients. Nginx, a

high performance HTTP server, was used as a load

balancer in the system. Nginx is responsible for providing

a balanced workload for each processor.

Bai [20] has presented a Hbase-based real-time search

method for big log data. In the proposed method, flume

agents collect log records from end users. ElasticSearch is

used for the analysis and indexing of logs. In the

experimental study, 7 GB log file containing 148.928.992

log was used. They searched the “Bigdata” keyword, the

number of total matched log events are 4375. The first 25

results in the search are returned in 6 seconds.

Bakır, Aydoğan, Aydın, Khodabakhsh, Arı and Ercan

have presented a sensor based data validation solution

[21]. 60.000 sensors located in the Tüpraş refinery create

an average of one hundred thousand records per day.

They have used Complex Event Processing (CEP) engine

and Cassandra Query Language (CQL) which is a query

tool similar to SQL language. In the study, it was shown

that at 15,000 events/second, relations and measurement

mistakes were detected and classified correctly.

He, Lu and Swanson [22] have developed a real-time

MapReduce scheduler. System has three components.

These are admission controller, job dispatcher and

feedback controller. The admission controller defines the

sequence of tasks that should be given to resources. The

job scheduler allows assigning new tasks to the worker

nodes. The feedback controller provides that the input

controller is up to date. In the experimental study, the

proposed system was compared with the deadline

constraint scheduler. It has been concluded that the

recommended scheduler is better according to the

feedback rate.

Stream_1

Stream_2

Stream_n

Src PI

Dst PI

Dst PI

Distributed streaming machine

learning algorithms-SAMOA

Spout

Bolt

Bolt

Logic topology Physical cluster

Apache Storm Cluster

Figure 10. Storm/SAMOA architecture.

Lecture Notes on Information Theory Vol. 5, No. 1, June 2017

10©2017 Lecture Notes on Information Theory

end periodically receives the Call Detail module. The back

Singh, Guntuku, Thakur and Hota [23] developed a

semi-real-time application to detect peer-to-peer botnet

attacks via machine learning algorithms. System has three

components: traffic sniffer module, feature extraction

module, and machine learning module. The traffic sniffer

module saves the packets and performs the pre-

processing phase. The feature extraction module obtains

attributes using Apache Hive [24]. Mahout [25] was used

in the machine learning module and the classification

accuracy rate was 99.7% when random forest algorithm is

used as classifier.

The comparison of the architectures have been given in

Table I.

III. CONCLUSION

In this study, architectures and applications of real-

time big data analytics have been investigated and

compared with others. According to studies in different

fields, big data applications need to be well organized in

time-critical systems to let the system gain the ability to

response in a short time.

REFERENCES

[1] J. Manyika, B. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh,

and A. H. Byers, Big Data: The Next Frontier for Innovation,
Competition, and Productivity, McKinsey Glob. Inst., 2011, pp. 1-

3.

[2] N. Marz and J. Warren, Big Data : Principles and Best Practices
of Scalable Realtime Data Systems, Manning Publications, 2012,

ch. 1, pp. 13-25.

[3] B.
Proc. IEEE/WIC/ACM International

Joint Conferences on Web Intelligence (WI) and Intelligent Agent
Technologies (IAT), Warsaw, 2014, pp. 333-337.

[4] M. A. Martínez-Prieto, C. E. Cuesta, M. Arias, and J. D.

Fernández, “The solid architecture for real-time management of
big semantic data,” Futur. Gener. Comput. Syst., vol. 47, pp. 62-

79, October 2014.
[5] X. Mo and H. Wang, “Asynchronous index strategy for high

performance real-time big data stream storage,” in Proc. 3rd IEEE

International Conference on Network Infrastructure and Digital
Content, Beijing, 2012, pp. 232-236.

[6] Introduction to MongoDB - MongoDB Manual. [Online].
Available: https://docs.mongodb.com/manual/introduction/

[7] J. Wang, Y. Zhang, Y. Gao, and C. Xing, “pLSM: A highly

efficient LSM-tree index supporting real-time big data analysis,”
in Proc. IEEE 37th Annual Computer Software and Applications

Conference, Kyoto, 2013, pp. 240-245.

TABLE I. COMPARISON OF EXAMINED STUDIES

Study Explanation Data

Performance

[2]
Real-time big data architecture is

presented.
- -

[3]

Multi-agent big data analysis

architecture is presented.

The system has not been

implemented. The proposed

system was discussed.

-

[4]
Big semantic data analysis architecture

is presented.
Meteorological data. Storage requirements have reduced.

[5]
Asynchronous Index Strategy is
presented.

Randomly generated stream
document.

AIS based on MongoDB has 17 times better insert
performance with 200 million documents than others.

[7] pLSM index is designed.
Randomly generated key-value

pairs in string format.

For insertion, pLSM has performed better than B-

Tree and LSM-Tree methods. pLSM was near the
best-performing B-tree method in point query.

However, pLSM has shown poor performance for

range query.

[8]
An infrastructure is proposed for
traffic data management.

Traffic sensor data and data files

with GPS, timestamp, speed and

acceleration information.

-

[9]
System based on cloud computing is

designed.
Traffic dataset.

With enough data node, HDFS write speed is 40

MB/s, and HBase write speed is 35.000 record/s.

[12]
Distributed streaming algorithms and

infrastructures are deployed.

Fine Resolution Mobility Trace
Data Set (SET2) that includes 50

million events.

Input data processing latency is about 1023 ms.

[15]
Storm topology model is presented by
combining with Spring.

GPS data.
Proposed method almost doubles the performance of
execution time.

[16]
System is designed for promotion

recommendation to eligible users.
CDR data.

Latency increases with the number of promotions

increases in database and records increases in the file.

[17]

Storm and SAMOA based on

architecture is proposed for real time

big data processing and analysis.

Internet traffic data. Skype traffic is classified as accuracy rate of 90.05%.

[19]
Storm based on real-time big data

processing system is proposed.

Messages generated from

RabbitMQ.
-

[20]
Real time big data search method is
presented.

7GB log event data. Improved the performance for execution time.

[21]
Sensor based data validation solution

is presented.
Sensor data.

15.000 events/second, relations and measurement

mistakes were detected and decided correctly.

[22] Novel real time scheduler is presented. -

Proposed system was compared with the deadline

constraint scheduler and is better according to the

feedback rate.

[23]
Intrusion detection system is

presented.

84.030 instances of internet

traffic data.

Accuracy is %99.7 when random forest algorithm is

used as classifier.

Lecture Notes on Information Theory Vol. 5, No. 1, June 2017

11©2017 Lecture Notes on Information Theory

Twardowski and D. Ryzko, Multi-agent architecture for real-
time big data processing, in ”

“

[8] W. Q. Wang, X. Zhang, J. Zhang, and H. B. Lim, “Smart traffic
cloud: An infrastructure for traffic applications,” in Proc. IEEE

18th International Conference on Parallel and Distributed

Systems, Singapore, 2012, pp. 822-827.
[9] J. Yu, F. Jiang, and T. Zhu, “RTIC-C: A big data system for

massive traffic information mining,” in Proc. Int. Conf. on Cloud
Comput. and Big Data, Fuzhou, 2013, pp. 395-402.

[10] Apache HBase TM Reference Guide. [Online]. Available:

https://hbase.apache.org/book.html
[11] Hadoop Tutorial-YDN. [Online]. Available:

https://developer.yahoo.com/hadoop/tutorial/module1.html
[12] A. Garzó, A. A. Benczúr, C. I. Sidló, D. Tahara, and E. F. Wyatt,

“Real-time streaming mobility analytics,” in Proc. IEEE

International Conference on Big Data, Silicon Valley, CA, 2013,
pp. 697-702.

[13] Tutorial. [Online]. Available:
http://storm.apache.org/releases/current/Tutorial.html

[14] The Apache Cassandra Project. [Online]. Available:

http://cassandra.apache.org/

[21] M. Bakır, B. Aydoğan, M. Aydın, A. Khodabakhsh, İ. Arı, and A.
Ö. Ercan, “Real-Time data reconciliation solutions for big data

problems observed in oil refineries,” in Proc. Signal Processing

and Communications Applications Conference (SIU), Trabzon,
2014, pp. 1612–1615.

[22] C. He, Y. Lu, and D. Swanson, “Real-Time scheduling in
MapReduce clusters,” in Proc. 10th Int. Conf. High Perform.

Comput. Commun. & 2013 IEEE Int. Conf. Embed. Ubiquitous

Comput., Zhangjiajie, 2013, pp. 1536–1544.
[23] K. Singh, S. C. Guntuku, A. Thakur, and C. Hota, “Big data

analytics framework for peer-to-peer botnet detection using
random forests,” Inf. Sci., vol. 278, pp. 488–497, September 2014.

[24] Tutorial - Apache Hive - Apache Software Foundation. [Online].

Available:
https://cwiki.apache.org/confluence/display/Hive/Tutorial

[25] Apache Mahout: Scalable machine learning and data mining.
[Online]. Available:

https://mahout.apache.org/users/basics/algorithms.html

Sinan AY received the BS degree from

Kocaeli University, Department of Computer
Engineering in 2009. He received MSc degree

Computer Engineering Department, Yalova

University in 2013. He is currently PhD
Candidate at Department of Computer

Engineering, Gazi University. His research
interests include data mining and big data

analysis.

M. Ali Akcayol received the BS degree in

Electronics and Computer Systems Education

from Gazi University in 1993. He received
MSc and PhD degrees in Institute of Science

and Technology from Gazi University in 1998
and 2001, respectively. His research interests

include Mobile Wireless Networking, Web

Technologies, Web Mining, Cloud Computing,
Artificial Intelligence, Intelligent

Optimization Techniques, Hybrid Intelligent
Systems.

Lecture Notes on Information Theory Vol. 5, No. 1, June 2017

12©2017 Lecture Notes on Information Theory

[15] J. Zhao, Z. Sun, and Q. Liao, “Implementation of K-means based

on improved storm model,” in Proc. 15th IEEE International
Conference on Communication Technology, Guilin, 2013, pp. 728-

732.

[16] P. Jayawardhana, D. Perera, A. Kumara, and A. Paranawithana,
“Kanthaka: Big Data Caller Detail Record (CDR) analyzer for

near real time telecom promotions,” in Proc. 4th International
Conference on Intelligent Systems, Modelling and Simulation,

Bangkok, 2013, pp. 534-538.

[17] M. D. Mauro and C. D. Sarno, “A framework for internet data
real-time processing: A machine-learning approach,” in Proc.

International Carnahan Conference on Security Technology,
Rome, 2014, pp. 1-6.

[18] G. D. F. Morales and A. Bifet, “SAMOA: Scalable advanced

massive online analysis,” J. Mach. Learn. Res., vol. 16, pp. 149–
153, February 2015.

[19] W. Yang, X. Liu, L. Zhang, and L. T. Yang, “Big data real-time
processing based on storm,” in Proc. 12th IEEE Int. Con. Trust.

Sec. Priv. Comp. Comm., Melbourne, 2013, pp. 1784–1787.

[20] J. Bai, “Feasibility analysis of big log data real time search based
on Hbase and ElasticSearch,” in Proc. Ninth International

Conference on Natural Computation, Shenyang, 2013, pp. 1166-
1170.

