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Abstract—Air combat maneuvers are very complex actions 

performed by agile aircrafts. Extracting critical maneuvers 

from a combat scenario in a structured format has many 

advantages like teaching maneuvers to the unmanned 

systems, evaluating pilot performance or analyzing possible 

combat scenarios. Basic Fighter Maneuvers are special 

maneuvers that are building blocks of combat fighting. This 

article proposes a methodology to identify pre-defined 

movements, match well-known combat maneuvers in a real 

flight of agile combat aircraft and build a feasible corpus to 

use this data for machine learning. The claims of the paper 

are justified by the simulation results. 
 

Index Terms—flight parsing, basic fighter maneuvers, air 

combat 

 

I. INTRODUCTION 

Basic Fighter Maneuvers are executed by agile aircraft 

during "Within Visual Range" in defensive or offensive 

positions or missile evacuation. For training artificial 

systems like UAVs, besides domain information [1], one 

of the best learning sources is real flight information of 

manned air vehicles. 

There are auto-pilot designs and combat support 

systems in the literature like rule based systems [2], 

influence diagrams [3], human cognitive models [4] and 

Artificial Intelligence (AI) techniques for air combat 

maneuvering [5]. There is a comparison of artificial neural 

networks and rule based system in [6] and maneuver 

prediction in [7] to support human combat pilots. 

Autonomous control of UAV is designed using ANFIS in 

[8]. There is an additional design by ANFIS in [9] 

including a predefined flight path. Both ANFIS design is 

for a single UAV without combat fighting. Assuming air 

combat as a pursuer-evader game and optimizing using 

approximation and dynamic programming is presented in 

[10]. Composing a flight trajectory in terms of seven 

primitive actions and a way point decomposition 

algorithm is presented in [11]. There is also a sliding 

mode controller design by the same author proposed in 

[12] which excludes an arbitrary movement mode. 

Our work advances the subject area in terms of 

representing a maneuver by movement sections instead of 

many flight parameters and proposes an abstraction stack 

for flight representation. The real flight data of the agile 
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aircrafts are decomposed into meaningful movement 

sequences and BFM maneuvers are searched and labeled 

to be learned by machine learning systems. 

This paper is organized as follows: In the next section 

we introduce the definitive terms of the problem. The 

third section proposes an abstraction stack for air frame 

flight representation. Using this abstraction, air operations 

can be executed from mission planning to physical control 

layer. The forth section defines the basic fighter 

maneuvers of close air maneuvers in terms of proposed 

abstraction. The fifth section defines how real flight 

information and relative geometry of two fighting aircrafts 

are decomposed. The sixth section evaluates methods for 

searching and indexing BFM in flight data and proposes a 

specific search method. The seventh section discusses the 

benefits of the proposed approach with simulation results 

and evaluates the search method. The last section defines 

the required steps to be performed for machine learning 

techniques with the concluding remarks.  

II. PROBLEM DEFINITION 

The objective of an air combat scenario is to move the 

aircraft into a position where one can shoot the other 

aircraft or minimize the risk of being shot. This depends 

on the positional advantage of both aircrafts which 

depends on the “relative geometry” to each other. 

Human pilot control the aircraft using the stick and gas 

pedal where a series of physical, aerodynamic and 

atmospheric equations run through propulsion, ailerons, 

elevators, rudder, wing and platform surface resulting 

forces and accelerations on 3 dimensions which changes 

the state of the system. This is a non-linear system control 

that is also affected by non-deterministic conditions like 

atmosphere, gravitational changes, varying weight and 

center of gravity. The air frame has 12 state variables 

𝑋 = {𝑛, 𝑒, ℎ, 𝑣, 𝜑, 𝜃, 𝜓, 𝛼, 𝛽, 𝑃, 𝑄, 𝑅} which are north, east, 

height position, velocity, roll, pitch, heading body axes 

angles, angular difference of pitch and heading between 

body and velocity axes and body angular velocity in three 

dimensions. 

Air combat is using an aircraft as a weapon and has its 

own domain rules to learn and practice. In a real air 

combat, both sides are maneuvering instantly to take 

advantage. Both sides can be in offensive position while 

was defensive in the previous action of the engagement. 

So classical pursuer-evader tactics is not applicable since 

pursuer only considers pursuing and evader only considers 
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evading. Since relative geometry changes instantly, the 

trajectory cannot be planned for a long period. 

With the difficulties of controlling air frame, including 

the combat logic to the control process makes it even 

worse where the control logic becomes domain specific. A 

mechanism is needed to distinguish physical, control, 

maneuver, tactical and strategic layers from each other. 

The domain information about air combat is at tactical 

and maneuver layer. After distinguishing layers from each 

other, the experience in real air combat flights should be 

extracted and used by machine learning techniques to train 

artificial systems like UAV auto-pilots. 

III. ABSTRACTION 

The air platform is abstracted by using its interfaces 

without dealing design details. We assume that the system 

is controlled in a robust, deterministic and well known 

way. Abstraction should be sound, complete and 

orthogonal. Abstracting an air platform is performed in 

five levels as show in Figure 1. 

 

 

Figure 1. Abstraction stack 

A. Control Level 

There is a robust air platform that can execute agile 

maneuvers. The platform is controlled in a stable, robust, 

optimal way and overcomes unexpected conditions as a 

non-linear system. The control system accepts reference 

inputs, generates control signals, handles the dynamics 

and measures the system output correctly. Control system 

accepts predefined movement orders with parameters and 

handles each order separately. Parameters of orders are 

interpreted as input signals. 

B. Movement Level 

The movements of an air platform can be states as a set 

of predefined actions. Every displacement instant of a 

route is a member of these actions. Movements are 

building blocks of maneuvers performed by human or 

artificial pilots. 

C. Maneuver Level 

Movements are executed sequentially to compose 

specific maneuvers. Maneuvers are well tested and know 

action series performed by human to achieve specific 

objectives. This level covers the domain information that 

should be learned. 

D. Tactical Level 

Maneuvers have different objectives at tactical level. In 

air combat it is not possible to generate a trajectory early, 

since there are instant decisions to achieve the best 

advantageous position over the enemy. Formation flights 

are executed by multiple friendly aircrafts that run 

formation specific maneuvers. Air to ground strike 

requires following the path through uncovered radar zones 

and approaching and releasing the munitions over the 

target at specific angles and altitude. BVR (Beyond Visual 

Range) maneuvers are executed to take best advantageous 

position before close engagement. Tactical decision 

makers may not understand details of control and 

movement level, but should make decisions using 

maneuvers. 

E. Strategic Level 

This level is where high level objectives are defined to 

make tactical decisions. 

IV. MOVEMENT DEFINITION 

There are 7 movement definitions in [11] are specific 

flight or control modes that have three set of variables. 

First set is mode inputs. These are duration of the mode, 

velocity and related angular changes. Second set is 

constraint states that are constant during the mode which 

have zero deltas. Third set is the driven dynamics which 

are the set of varying states. Two of the modes do not 

have duration and velocity inputs since they are transition 

modes. For the abstraction, second and third set have no 

meaning. The system is abstracted as a black box which 

has modal inputs and system states as outputs. 

The 3D mode which changes angles in all 3 dimensions 

is excluded in [12] and pitch yaw transition mode is added 

instead. But this leads to an undefined mode in real flights. 

3D mode may look arbitrary but there is a mode that air 

platform both rolls and loops at the same time which 

inputs the angular change in roll and loop and results the 

change in heading angle like quarter plain maneuvers. In 

barrel roll attack, pitch changes 360
0
 and roll changes 270

0
 

at the same which results 90
0
 of change in heading angle. 

Other case occurs during turns. For getting a force on 

body east and west directions, aircraft rolls and starts 

turning. Roll is retained back to zero before desired 

change in the heading achieved. There for the last roll in 

turn overlaps with the turn. The overlapping time can be 

quarter of the turn time and leads to miscomputing while 

checking angle identification matrix. 

Level Flight is ignored because climbing with constant 

or zero pitch angles has no difference in terms of 

identification. They are grouped in straight path flight. 

For transition modes ∆𝑡, 𝑣 should not be ignored since 

there is a significant change of position in high speeds. Six 

modes have self-explaining names and are listed below 

with inputs. 

Mode is expressed as below using the inputs as seen in 

Table I. 

 σ = {𝑞, ∆𝑡, 𝑣, �̇�, �̇�, �̇� } (1) 
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TABLE I.  MOVEMENT IDENTIFICATION MODE 

Mode Name Inputs 

SP Straight Path ∆𝑡, 𝑣, 𝜃 

TU Turn ∆𝑡, 𝑣, 𝜃, �̇� 

LO Loop  ∆𝑡, 𝑣, �̇�, 𝜓′̇  
PY Pitching Yaw ∆𝑡, 𝑣, �̇�, �̇� 

RO Roll ∆𝑡, 𝑣, �̇� 

RP Rolling Pitch ∆𝑡, �̇�, �̇� 

 

A flight mode consists of mode label, duration in 

milliseconds, velocity and desired angular change in roll, 

pitch and heading. 

V. BFM REPRESENTATION 

BFMs are building block of fighter tactics that are 

decided based on relative geometry to another aircraft.  

A. Relative Geometry 

Relative geometry R is the range and antenna train 

angles between two aircrafts and calculated as described 

in [13]. 

 R = {r, η1, η2} (2) 

r is the magnitude of range vector between each aircraft 

and 𝜂 is the angle between range and velocity vectors of 

aircrafts. 

B. Maneuvers 

Five sample maneuvers in Table II  are decomposed 

into movements using the definitions in [13]. Unspecified 

parameters ∆𝑡, 𝑣  should be calculated depending on 

conditions of the flight to achieve the required delta 

changes. The exact parameters are derived from 

definitions but angular parameters should be fine-tuned 

based on R. 

TABLE II.  SAMPLE BFM DECOMPOSITION 

BFM q φ θ ψ 

Break: Turn sharply across the high speed 

attacker's flight path. 

RO 

TU 

 

 

 

 

 

π/2 

Barrel Roll Attack: Offensive maneuver 

counter to break. It consists of 3600 loop and 
2700 roll completed at the same time. 

RP 

RO 
3π/2 

π/2 

2π  

Immelmann: Decrease speed, increase 

altitude, change direction by 1800. 

LO 

RO 

 

π 

π  

Split-S: Decrease altitude, increase speed, 
change direction by 1800. 

RO 
LO 

π  
π 

 

Chandelle: Looks like Immelmann but is 

executed with a lateral loop using constant 
pitch angle y. Roll angle x should be 

calculated for the desired turn radius. 

RO 

PY 
TU 

PY 

RO 

x 

 
 

 

-x 

 

y 
 

-y 

 

 
π 

 

Besides these sample BFMs, there are also maneuvers 

used for formation flight and air to ground strikes. These 

maneuvers are not included in this paper but can be 

decomposed using the domain information. 

VI. FLIGHT DATA 

The flight data of agile airframe is recorded in a device. 

For example F-16 records 232 columns of binary data 

with ~40 milliseconds time frames. After noise filtering 

and combining modes of similar instants, flight data F is 

converted to sequence of modes. Every mode is also 

labeled with its timestamp. 

 𝐹 = {𝜎1, 𝜎2, … , 𝜎𝑛} 

A. Movement Identification 

The angle identification matrix proposed in [11] is 

modified as below to include roll angle. Pitch and heading 

angle is removed since their values are not important for 

identification, but the change is important. The notation is 

kept same as 0 for zero and T as time varying. Final 

matrix I is presented in Table III.

TABLE III.  ANGLE IDENTIFICATION MATRIX 

q �̇�r �̇�w �̇�w 

SP 0 0 0 

TU 0 0 T 

LO 0 T 0 

PT 0 T T 

RO T 0 - 

RP T T - 

 

Algorithm 1 is used to convert flight data to modal 

sequence where 𝐴𝑖 = {𝐴𝜑𝑖𝐴𝜃𝑖𝐴𝜓𝑖}  is angular change 

matrix for each record, Th is delta threshold and Td is data 

threshold for each angle. 

Algorithm 1. Movement Decomposition Algorithm 

1 CALCULATE missing state variables and �̇�, �̇�, �̇� 

for each record in the wind axis. 

2 SMOOTH �̇�, �̇�, �̇� for noise filter. 

3 REPEAT 2 times 

4 
�̇�2𝑖 ←

�̇�2𝑖 + �̇�2𝑖+1

2
 

5 
�̇�2𝑖+1 ←

�̇�2𝑖 + �̇�2𝑖+1

2
 

6 REPEAT 1 times 

7 
�̇�𝑖 ←

�̇�𝑖−4 + �̇�𝑖−3 + �̇�𝑖−2 + �̇�𝑖−1 + �̇�𝑖

5
 

8 REPEAT for every record i. 

9 REPEAT for α in �̇�, �̇�, �̇� 

10 IF �̇� >  𝑇ℎ𝛼 

11 m ← I 

12 IF ∑ �̇�𝑖
𝑚 > 𝑇𝑑𝛼   

13 𝐴𝛼 𝑚..𝑖 ← 𝑇 

14 ELSE 

15 𝐴𝛼 𝑚..𝑖 ← 0 
16 ELSE 

17 𝐴𝛼 𝑚..𝑖 ← 0 

18 FOR each record i 𝑞𝑖 ← match(𝐴𝑖, 𝑖) 

19 FOR each sequential group q at [s..e] create mode 

𝜎i 
20 𝑣i  ← ∑ 𝑣𝑒

𝑠 /(e-s), 𝛥𝑡𝑖 ← e-s, 𝑞i  ← 𝑞s 

21 CASE 𝑞i 

22 SP: 𝜃i ← ∑ 𝜃𝑒
𝑠 /(e-s) 

23 TU:𝜃i ← ∑ 𝜃𝑒
𝑠 /(e-s),    𝜓i←∑ �̇�𝑒

𝑠  

24 LO: 𝜃i ←  ∑ �̇�,𝑒
𝑠            𝜓i ← ∑ 𝜓𝑒

𝑠 /(e-s) 

25 PT:𝜃i← ∑ �̇�𝑒
𝑠 ,              𝜓i←∑ �̇�𝑒

𝑠  

26 RO:𝜑i← ∑ �̇�𝑒
𝑠  

27 RP:𝜑i← ∑ �̇�𝑒
𝑠 ,             𝜃i←∑ �̇�𝑒

𝑠  
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After creating movements, below corrections are made 

to unify repeating modes or eliminate noisy movements; 

1) Sequential roll and turn movements are combined 

into one roll and turn couple if roll and turn directions do 

not change. 

2) Turn or loop between two RP modes are ignored and 

merged into the RP mode if RP mode is rolling and 

looping at the same direction. 

3) Movements with total angle below data threshold 

are ignored and merged into the previous movements. 

This method guaranties that every instant is labeled for 

a movement mode and there is no repeating movement 

sequentially. 

B. BFM Extraction 

To extract BFM information, there should be two 

flights to calculate relative geometry using time stamp to 

synchronize with each other. BFM are executed in WVR 

(Within Visual Range) conditions. So the conditions in 

BVR (Beyond Visual Range) are ignored. For learning 

purposes, some values in the state vector of both sides are 

also included. These are altitude, pitch angle and velocity. 

 S=[ℎ1𝜃1𝑣1, ℎ2𝜃2𝑣2, …, ]   (4) 

Input data for BFM learning contains; states S1 and S2 

with relative geometry R, mode 𝜎 is executed. 

 𝐿 = {𝑆11𝑆21𝑅1𝜎1, … , 𝑆1𝑖𝑆2𝑖𝑅𝑖𝜎𝑖} (5) 

This learning set is based on movements only. Instant 

decisions for simple movement selection can be learned 

with this data. But executing a maneuver cannot be based 

on simple movement selections. Indeed movements 

should be executed based on selected maneuver. 

VII.  PATTERN MATCHING 

Searching a BFM in a flight can be simplified as 

searching a sequence of movements in a longer sequence 

of movements. There are different pattern search 

algorithms [14] that can be used. Three of search methods 

are examined. 

A. Sequential Search 

The movements of BFM are serially compared with the 

flight movements beginning from the first movement. 

When there is a mismatch search is assumed to be not 

matching and restarted from last position. This method has 

draw-backs. First there may be repeating sequences in the 

BFM and when there is a mismatch repeating sequence 

has to be looked back. Other draw-back occurs for other 

BFMs. Searching cost of one BFM is multiplied for each 

BFM to search. Sequentially searching the series of BFM 

modes is the worst method to use.  

B. Automaton 

BFM is defined as an automaton system. The regular 

expression of the deterministic finite automaton is 

composed of six modes as states and transitions between 

them. Every BFM has a modal sequence and DFA is the 

mixture of all BFM definitions. The alphabet contains the 

token {q1 .. q6} and lexemes are formed from the alphabet. 

Search problem is solved by recognizing the tokens of 

BFM language. 

Automaton system solves the problem of searching 

multiple BFMs in a single run. But if other maneuvers are 

added to BFM set, in other words if BFM language is 

modified, the search should be repeated over the whole set 

of flights. It seems very likely to happen because besides 

air combat maneuvers, there should always be new 

maneuver sets for other purposes. Also newly created 

BFM may occur as well. Only one change modifies the 

whole language definition. This leads to impractical 

conditions when there is a huge set of flights. 

C. 3 Bit Indexing 

We propose a specific identification of each mode 

sequence. There are 6 modes. All modes can be expressed 

by 3 bits of data. 32 bits of integer can hold 10 maneuver 

sequence with 30 bits. Every sequence of flight also holds 

additional 32 bit integer value that stores previous 10 

modes (PTM). Modes are stored from least significant bit. 

Left 2 bits are not used and set to zero. PTM data format 

for 32 bit value is in Figure 2. 

 

  qi qi-1 qi-2 qi-3 qi-4 qi-5 qi-6 qi-7 qi-8 qi-9 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 2. 32 bit PTM data format 

Flight PTM labeling algorithm is in Algorithm 2. 

Algorithm 2. Flight PTM Labeling 

1 ptm0 = 0 

2 FOR each mode in flight 

3 ptmi = (ptmi-1 shr 3) + (qi shl 27) 
 

PTM is also calculated for each BFM. When there are 

less than 10 moves, PTM is shifted left 3 bits for each 

missing moves. If BFM has more than 10 moves, only 

first 10 are considered. This is assumed to be a rare 

condition and if occurs searching the remaining modes 

sequentially would not have much cost after matching the 

first 10 moves. The pseudo algorithm of labeling BFM b 

is in Algorithm 3. 

Algorithm 3. BFM PTM Labeling 

1 ptmb = 0 

2 maskb = 0 

3 FOR each of first 10 modes in b 

4 ptmb = (ptmb shr 3) + (qi shl 27) 

5 maskb = (maskb shr 3) + 0x3C000000 
 

Both algorithms are straight forward and executed in 

O(n) time only once for each flight. This method does not 

search BFM on flight sequence but labels each mode with 

the previous 10 sequence. The label is integer value where 

it can easily be indexed, hashed or used in mathematical 

or bitwise operations. Previous maneuvers are stored 

starting from left (first is at left most bits) so BFM can be 

searched with value indexing in logarithmic (like B tree in 

data access mechanisms) times, hashing in single access 

or whole flight can be indexed in O(n) time with radix sort 

[14] using 3 bit bucket size. Instants of specific BFM can 
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be listed and stored separately for later use as well. A 

simple match command is as below. 

 boolean matchib = ptmb equals (ptmi and maskb) (6) 

After indexing air combat scenario, the learning data 

about BFM executions includes following information. 

While states of both air frames are S1 and S2 and relative 

geometry is R, B is selected as BFM. 

 𝐶 = {𝑆11𝑆21𝑅1𝐵1, … , 𝑆1𝑖𝑆2𝑖𝑅𝑖𝐵𝑖} (7) 

The final learning corpus is based on maneuvers instead 

of movements. The corpus includes maneuver selections 

based on states of both aircrafts and relative geometry. 

Both states include 3 variables for each and with 

additional 3 variables of relative geometry, 9 values are 

used to identify the selected maneuver. 

VIII.  RESULTS 

The extraction run on 71 minutes 1x1 BFM training 

flight which was about 104,000 lines of 40 MB binary 

data, 25 rows per second for each aircraft. This binary data 

is extracted from recording device of flight computer. 

During extraction only 12 out of 256 variables are read. 

Also records before take-off and after landing are 

neglected. Aircrafts flying together in the same exercise 

are supposed to have synchronized time. 

Two flights are decomposed into average 750 modal 

sequences consuming about 40 KB in size for each. There 

were 22 engagements between two aircrafts. Sample 

engagement labeled as “Barrel Roll Attack” is examined 

below (see Fig. 3). 

 

Figure 3. Barrel roll attack (altitude, latitude, longitude) 

Start and end points are 30 seconds before and after 

maneuver for a better look at the initial and final 

conditions. 

Barrel Roll Attack is a difficult offensive quarter plain 

maneuver. While defensive aircraft makes a sharp break 

against a high speed enemy, offensive aircraft should not 

slide, loose energy or stop tracking. So offensive aircraft 

makes a complete loop with 3/4 roll and additional 1/4 roll 

after finishing the loop. This is the formal definition of the 

maneuver in [1]. But in real world defensive pilot can 

break in any degrees. Offensive pilot should change the 

total roll during the loop to turn the wind axis to the exact 

enemy path. This decision is made while looping is at π/2. 

The pilot has milliseconds to make this decision. 

Generally it is a reflexive action. Parsing the movements 

gives the opportunity to focus on these instants. For 

artificial decisions after identifying the right maneuver to 

execute, modal inputs of the individual movements should 

be calculated, learned or purified using the relative 

geometry during the movement. (See Fig. 4) 

 

 

Figure 4. Range (m) vs time (s) 

The range between blue and red aircrafts keeps neutral 

during the cruise mode. Before starting BFM exercises 

both aircraft depart from each other to initial positions of 

the combat. Increase in the range shows the BFM start 

instants. (See Fig. 5) 

 

Figure 5. Antenna train angles (degree) vs time (s) 

Lower antenna train angle has more advantage on the 

other. 0
0
 angle is the ultimate shooting position where the 

enemy is absolutely in your flight path. 180
0
 degree of 

ATA means that enemy is absolutely behind you. ATA in 

the cruise mode is neglected. 

During exercise ATA switches according to the success 

of BFM execution. It can also be observed from the 

graphic how positional advantage changes in air combat 

timeline after execution of a movement (see Fig. 6). 

 

Figure 6. Movement modes vs time (s) 

Analysis on the number of movements during the 

combat flight timeline shows that, while both aircrafts are 

on cruise mode flying to the training airfield; straight path, 

turn and roll maneuvers are executed to follow the pre-

defined path and looping is not preferred. Rolling pitch 

movement is almost never used in cruise mode. 

When range increases or both sides depart from each 

other to take initial positions of air combat, rolling pitch 

and loop movements are used a lot. This contradicts with 

the claims in [12], that it is rarely preferred to control all 

three angles (roll pitch heading) simultaneously in air 

combat. 
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IX. APPLICATION AREAS 

A. Pilot Performance Assesment 

Evaluating a combat flight in de-briefing process is 

time consuming and difficult. Besides trainer pilots are 

rare resources. One hour flight requires two hours of DVR 

replay and evaluation. 

First contribution of this paper is determination of the 

exact point in time of maneuver executions. This helps to 

focus on combat instants and minimize evaluation time. 

Second contribution is to score how successful a trainee 

has flown a maneuver. This can be done comparing the 

flight data with the perfect maneuver definition or 

checking the positional advantage during the maneuver. 

Third contribution is at statistical level. The 

improvement of pilot during the training process can be 

observed and trainers can decide which type of maneuvers 

to pay more attention. 

B. IT Based Air Combat Assistance 

Machine learning mechanisms can be utilized using the 

real flight data and decisions can be made in real time to 

propose the correct maneuver to the pilot. This proposal 

not only consists of movements of maneuver, but also 

modal inputs should be calculated as well. 

There are different types of applicable machine learning 

techniques but a common requirement is data sets. Data 

sets should be collected from real air combat scenarios 

and divided into two as training and test set. Original state 

variables of an aircraft are very complicated and difficult 

to use in machine learning. It is transferred to a more 

understandable and purified format. 

Forth contribution is to propose a method to build 

corpus data for air combat training from actual flight data. 

C. UAV Combat Training 

Deciding the correct maneuver in real time also offers 

the opportunity to execute it by UAV. The inputs of the 

modal sequences in the proposed maneuver can be fine-

tuned and integrated into the UAV control system and 

fully autonomous air combat without human pilot can be 

achieved. 

X. CONCLUSION AND FUTURE WORK 

Real air combat flight includes valuable and expensive 

data to learn how to execute a successful air combat. This 

article proposes a methodology to extract meaningful data 

for learning process. The learning process should be 

designed to result two decisions during air combat. First 

decision is to choose the right maneuver using the state 

and relative geometry. Second decision is to propose 

appropriate inputs to the movement sequences of chosen 

maneuver. 

The learning data includes information from two enemy 

flights. But other conditions exists where there are 

multiple friendly flights or a single flight. The 

methodology should be implemented for these cases as 

well. The format of learning data may be extended or 

minimized accordingly. 

Another future work is designing a data management 

environment to easily access, query and analyze when 

huge amounts of flight data is gathered from various kinds 

of resources like different types of aircraft flight 

computers or multiple radar track fusion. 
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