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in knowledge discovery and decision support systems. They 

are simple and practical prediction models but often suffer 

from excessive complexity and can even be incomprehensible. 

In this study, a genetic algorithm is used to construct decision 

trees of increased accuracy and efficiency compared to those 

constructed by the conventional ID3 or C4.5 decision tree 

building algorithms. An improved definition of an efficient 

binary decision tree is proposed and evaluated – instead of 

simply using the number of nodes in a tree, the average 

number of questions asked in the tree for all the database 

entries is proposed.  

 

I. INTRODUCTION 

Decision trees approximate discrete-valued target 

functions as trees and are widely used practical methods 

for inductive inference in knowledge discovery and 

decision support systems because of their natural and 

intuitive paradigm to classify a pattern through a sequence 

of questions [1]. Algorithms for constructing decision trees 

such as ID3 [1]-[3] and C4.5 [4] often use heuristics to find 

a shorter tree. However, finding efficient and accurate 

decision trees is a difficult optimization problem [5]-[7].  

Genetic algorithms (GAs) use an optimization technique 

based on natural evolution [8]-[11]. GAs has been used to 

find near-optimal decision trees in twofold. On the one 

hand, they were used to select attributes to be used to 

construct decision trees in a hybrid or preprocessing 

manner [12]-[14]. On the other hand, they were applied 

directly to decision trees [15], [16]. A problem that arises 

with this approach is that an attribute may appear more 

than once in the path of the tree.  

In order to utilize genetic algorithms, decision trees 

must be represented as chromosomes where genetic 

operators such as mutation and crossover can be applied. 

The main contribution of this paper is proposing a new an 

improved definition of an efficient binary decision tree, 

instead of simply using the number of nodes in a tree, the 

average number of questions asked in the tree for all the 

database entries is proposed. The remainder of the paper is 

organized as follows. Section 2 reviews decision trees. 

Section 3 describes the dataset. Section 4 presents the 
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encoding scheme and the results and section 5 discusses 

the conclusion. 

II.  PRELIMINARY: DECISION TREES 

Decision trees are very popular data mining method for 

classification and regression, and can be conveniently 

induced, exchanged, and visualized by many tools. A 

decision tree consists of intermediate nodes, where 

attributes (variables) are tested, and leaves where decisions 

are stored [17], [18] (see Fig. 1). 
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A decision tree is a hierarchal structure (a flowchart), 

where each internal node (no leaf node) signifies a test on 

an attribute. The branches represent the outcomes of the 

tests, and the leaf nodes (or terminal nodes) hold the class 

labels. The root node is the topmost node in a tree [17] (see 

Fig. 2). 
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The formation of decision tree classifiers does not 

require any parameter setting that makes it appropriate for 

exploratory knowledge discovery. Decision trees can 
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Figure 1. A sample of a full binary decision tree structure T1f

Fig. 2  Representation of a generic decision treeFigure 2. Representation of a generic decision tree



  

manage high dimensional data. Their tree representation 

form is intuitive and generally easy to understand by 

humans. 

The learning and classification steps of decision tree 

induction are simple and fast. Overall, decision tree 

classifiers seem to have good accuracy, which may also 

depend on the data that is provided. In medicine, 

manufacturing and production, financial analysis, 

astronomy, and molecular biology, decision tree induction 

algorithms have been used for classification [5].  

 
 P Q R S w 

X1 0 0 0 0 W1 

X2 0 1 1 0 W1 

X3 1 0 1 0 W1 

X4 0 0 1 1 W2 

X5 1 1 0 0 W2 

X6 0 0 1 0 W2 

(SU = Surgery, SW = Swelling, PN = leg pain and PE = Pulmonary 

embolism) [5] 

 

Given a set of training data set D where each attribute 

have a value. D is a matrix with n instances where each 

instance xi has a value which is one of c states of nature w. 

The database sample consists of n = 6, d = 4, c = 2 and w = 

{w1, w2}.  

A decision tree is a rooted tree T that consists of internal 

nodes representing attributes, leaf nodes representing 

labels, and edges representing the attributes’ possible 

values. 
D 

 

 

Tx
                Ty

 

     

Decision trees classify instances by traversing from root 

node to leaf node. The classification process starts from the 

root node of a decision tree, tests the attribute specified at 

this node, and moves down the tree branch according to the 

given attribute value. Fig. 3 shows two decision trees, Tx 

and Ty. Tx is said to be a consistent decision tree because it 

is consistent with all instances in D. Ty is inconsistent with 

D because x2’s class is actually w1 in D whereas T 

classifies it as w2. 

There are two important properties of a binary decision 
tree: 

 Property is the size of a decision tree with l leaves is 
2l –  

 Property is the lower and upper bounds of l for a 

consistent binary decision tree are c and n: c <= l 

<= n.  

The number of leaves in a consistent tree must be at least 

c in the best cases; If D represents a c-class classification 

problem. The number of leaves will be the size of D with 

each instance corresponding to a unique leaf, in the worst 

cases, for example, T1 and T2 [5], [19]. 

 

 
T1 with 11 nodes      T2 with 9 nodes 

Fig. 4 shows two consistent decision trees. All instances 

x = {x1, . . . ., x6} are classified correctly by both decision 

trees T1 and T2. Conversely, an unknown instance (0, 0, 0, 

1, ?), which is not in the training set, D is classified 

differently by the two decision trees. T1 classifies the 

instance as w2 whereas T2 classifies it as w1. This inductive 

inference is a fundamental problem in machine learning 

[17], [19]. In this case, the simpler decision tree is 

preferred, a strategy that agrees with a well- known 

principle known as Occam’s razor [5], [11], [20]. The 

minimum description length principle formalized from 

Occam’s razor [5], [21], [22] is a very important concept in 

machine theory [5], [21], [23]. Occam’s razor is intuitive 
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Figure 3. Tx is consistent with D and Ty is inconsistent with D [17]

Figure 4. Consistent decision trees



  

because the additional components in a complex decision 

tree stand a greater chance of being fitted purely by chance. 

In the words of Einstein, “Everything should be made as 

simple as possible, but not simpler” [17], [20].  

Two data sets were extracted from the databases in the 

Montefiore Medical Center Vascular Laboratory and the 

general patient registry. Then, selected attributes were 

converted into binary attributes, and shorter and/or more 

accurate decision trees were created using the genetic 

algorithm on both of the DVT datasets.  

III. DVT DATASETS 

Deep Venous Thrombosis (DVT) is an intrinsic disease 

where blood clots form in a deep vein in the body. Known 

risk factors for DVT include diabetes, surgery, smoking, 

cancer, obesity, congestive heart failure, swelling, cellulitis, 

injury, and pulmonary embolism [5]. These factors can be 

determined by patients and physicians without medical 

examinations. Hence, eighteen potential attributes which 

can contribute to DVT were extracted from 515 records in 

databases at the Montefiore Medical Center Vascular 

Laboratory and the general patient registry. The dataset 

attributes are summarized in Table I together with the DVT 

outcome. Of the 515 records 350 patients were positive and 

165 negative for DVT.  

TABLE I.    DATASET ATTRIBUTES  

 Name  Description  

1 Sex (GN) 0 = female; 1 = male 

2 Age (A6) 0 = age < 60; 1 = age ≥ 60 

3 Diabetes 

(DB) 

0 = normal;  

1 = receiving some treatments 

4 Smoking (SM) 

(SS, SB) 

0 = never smoked;  

1 = active Smoker;  

2 = stopped smoking 

5 Surgery 

(SR) 

0 = never had surgery;  

1 = previous surgery 

6 Pain (PN) 

(LP, RP) 

0 = none; 1 = pain in the leg  

{None, Right, Left, Bilateral} 

7 Swelling 

(SW) 

0 = none;  

1 = swelling in the leg 

8 Chest Pain (CP) 0 = none; 1 = pain in Chest 

9 Cancer (CR) 0 = normal; 1 = positive  

10 Cellulitis (CL) 0 = normal; 1 = positive 

11 Injury (IJ) 0 =none; 1 = previous injuries 

12 Pulmonary embolism 

(PE) 

0 = never diagnosed;  

1 = previously diagnosed 

13 Congestive heart 

failure (HF) 

0 = never diagnosed;  

1 = previously diagnosed 

14 Obesity (OB) 0 = none; 1 = specified 

15 Accident (AC) 0 = none; 1 = had a fall 

16 Hyperlipidemia 

(LIP) 

0 = never diagnosed;  

1 = previously diagnosed 

17 Cardiac 

Dysrth-ythmia (CD) 

0 = normal;  

1 = previously diagnosed 

18 Lymphoproliferat 

disease (LD) 

0 = normal;  

1 = previously diagnosed 

 DVT 0 = negative for DVT;  

1 = positive for DVT 

 

and 0 otherwise. Non-binary nominal attributes include 

‘smoking’ and ‘pain’ where they have three and four 

possible values, respectively. These are binarized as shown 

in Table II.  

TABLE II.   NOMINAL TO BINARY PREPROCESSING 

Smoking  Leg Pain  

SB    SS  LP    RP  

1     1 Smoking 1     1 Bi 

1     0 Stopped 1     0 L 

0     0 Never 0     1 R 

  0     0 None 

 

The nominal type ‘Leg Pain’ attribute which has four 

possible values {L, R, Bi, N} in the original table is 

represented by two binary attributes, LP (pain in the left leg) 

and RP (pain in the right leg). The ternary attribute, 

‘Smoking’ in the original table is represented by two binary 

attributes ‘SB’ (smoked before) and ‘SS’ (still smoking). 

Note that in certain datasets, the smoking attribute is 

denoted as simply ‘SM’ having either 0 (nonsmoker) or 1 

(smoker). This is because not all questionnaires distinguish 

the stopped smoker. Similarly, the pain attribute may 

appear as simply ‘PN’ in some datasets.  

Potential users for the proposed prediction models 

include patients at home and physicians. Two datasets were 

created – one for patients and one for physicians and those 

with medical knowledge. Because most patients have little 

medical knowledge, Dataset I (see Table I, Nos. 1-7) was 

created with attributes which can be determined easily 

without much medical knowledge. Dataset II (see Table I, 

Nos. 1-18) was created using all the attributes in Table I 

(except for PN) and this dataset is for physicians or users 

with some medical knowledge.  

 

  

37

Lecture Notes on Information Theory Vol. 3, No. 1, June 2015

©2015 Lecture Notes on Information Theory

To use the genetic algorithm to build a binary decision 

tree, the attribute types must be binary [5], [24]. The 

numeric data, ‘age’ attribute (A6) is binarized: 1 if over 60 
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Figure 5. Illustration of encoding schema [17].

IV. ALGORITHM AND RESULTS

To construct decision trees using genetic algorithms, the 

tree must be encoded to enable the genetic operators, such 

as mutation and crossover to be applied. Let P = {p1, p2… 



  

Pd} be the ordered attribute list. To show and describe the 

process, the full binary decision tree T1
f
 in Fig. 1, P = {PN, 

PE, SU, SW}. The encoding process converts the attribute 

names in the full binary decision tree into index of the 

attribute as per the ordered attribute list P. It recursively, 

starts from the root as depicted in Fig. 5. For example, the 

root is R and its index in P is 3. For each sub-tree, the 

encoded decision tree Te updates from 1 to d – i +1 

recursively. Final step, takes the breadth-first traversal to 

generate the chromosome string S. For T1
f 
the chromosome 

string S1 is given in Fig. 5 (b) [5]. 

In Fig. 6 are binary decision trees which are built from 

Dataset I. For each node the left branch is 0 (no) and the 

right branch is 1 (yes). Tree leaves indicate whether DVT 

is considered positive or negative.  

The decision tree in Fig 6 (b) suggests that a patient 

might have DVT if he/she never had surgery but has 

diabetes and is over 60 year old or might have DVT if 

he/she had previous surgery and feels pain in the leg and 

had previously smoked. The positive DVT cases can be 

logically expressed in the disjunctions of conjunctions 

form: (SR = 0  DB = 1  A6 = 1)  (SR=1  PN=1  SB 

= 1).  

SB
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n

 

If a patient wants to predict the likelihood of DVT, the 

decision tree prediction model such as one in Fig. 6 (c) will 

prompt a sequence of questions. First, it will ask whether 

the patient is a current active smoker. When the patient 

answers with ‘yes’, it will prompt to ask about the gender. 

If the patient is a female, it will prompt whether she is over 

60 year old. If the answer is “yes”, it will ask whether she is 

a diabetic. If so, the decision tree predicts that she has a 

significant risk for DVT; in fact according to current 

laboratory records, one has a 66.67% chance of having a 

DVT under these conditions. Also, note that even though 

the decision tree predicts “No” in the left-most branch in 

Fig. 6 (c) where the patient is not currently smoking and 

does not feel pain, the chances that the patient may have 

DVT according to the database is about 45.6%. The 

decision tree is capable of providing the probabilities.  

The popular decision tree algorithm C4.5 constructs 

pruned decision trees [6]; and was used to construct the 

tree shown in Fig. 6 (a) having a performance of 59.5%. 

The most basic and popular algorithm to construct decision 

trees, called ID3, constructs short trees [8]. However, the 

decision tree constructed by ID3 is not shown here because 

it was unreasonably large and too complex for patients and 

perhaps even physicians to use. However, its performance 

on Dataset I was 72% for DVT prediction.  

In this study, a genetic algorithm is used to find shorter 

and/or more accurate decision trees. It starts with 100 

random decision trees, and only short and good decision 

trees survive to the next generation. Using mutation and 

cross-over operations, the next 100 generations are 

generated. Mutation and crossover are the two most 

common genetic operators. The mutation operator is 

defined as changing the value of a certain position in a 

string to one of the likely values in the range. Fig. 7 

illustrate the mutation process on the attribute selection 

scheduling string S1
f
 = (3, 1, 3, 2, 1, 2, 2) and with P= (PN, 

PE, SU, SW). If a mutation occurs in the first position and 

changes the value to 4, which is in the range {1... 4}, T4
f
 is 

generated. If a mutation happens in the third position and 

changes the value to 2, which is in the range {1… 3}, then 

T5
f
 is generated. As long as the changed value is with the 

allowed range, the new string result will always generate a 

valid full binary decision tree.  

 
(a) 

 
(b) 

 
(a) 
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Figure 6.  Decision trees from dataset I [11]

Figure 7.  Illustration of mutation operator [11]



  

 

 

 

 

To find shorter and more accurate trees, the GA was 

performed for 200 generations. By limiting tree depth to 5, 

the decision tree of Fig. 9 (b) was obtained. Its 

performance rate, however, is lower than that of C4.5. Fig. 

9 (c) and (d) show trees found by limiting the tree depth to 

6 and 7, respectively, and have accuracies of 73.75% and 

75.25%. It has been observed that greater depth usually 

results in higher accurate until over-fitting occurs.  

The best measure of efficiency (shortness) for a decision 

tree is probably the average number of questions required 

to obtain a prediction. Other measures might be the depth 

of the tree or the number of nodes in the tree.  

TABLE III   

 

COMPLEXITY OF DECISION TREES WITH DIFFERENT DEPTH 

LIMITS

 

    GA

 

Depth 

limit

 

Performance

 

rate

 

The average # of 

question

 

5

 

69.75

 

2.9525

 

 

6

 

73.75

 

3.3725

 

7

 

75.25

 

3.8955

 

8

 

76.50

 

4.3275

 

9

 

76.75

 

4.8225

 

10

 

78.00

 

5.1225

 

11

 

78.50

 

5.4675

 

12

 

79.50

 

5.8675

 

13

 

80.25

 

6.3075

 

    C4.5 

 

12

   

72.25

 

7.485

 

    ID3 

 

16

 

   

 

80.0

  

 

Table III shows the depth limits in GA, the performance 

rate, and the average number of questions to be asked. Note 

that the average number of questions increases 

monotonically with the depth limit, indicating that depth 

also appears to be a good measure of efficiency [5], [17]. 

The average number of questions to be asked of a user is 

7.485 for the C4.5 decision tree in Fig. 9 (a) whereas there 

are several shorter ones listed in Table 3. The number of 

nodes is apparently not a good measure of efficiency – the 

C4.5 decision tree has 25 compared to 19, 32, and 44 in Fig. 

9 (b), (c), and (d).  
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(b)

Figure 8. Illustration of crossover operator [11]

Fig. 8 shows the crossover process with two parents 

attribute selection scheduling strings, P1 and P2. After 

randomly selecting a split point, the first part of P1 and the 

last part of P2 contribute to yield a child strings S6.

Reversing the crossover produces a second child S7. T6
f

and T7
f
full decision trees resulted from these two children.

For dataset I, several decision trees which are shorter 

and more accurate than the one created by ID3 in Fig. 6 (a) 

were identified. Shorter depth and more accurate decision 

tree is shown in Fig. 6 (b) and an even more accurate one 

but of the same depth is shown in Fig. 6 (c). 

For dataset II, Fig. 9 shows a decision tree by the C4.5 

algorithm, and three decision trees by GA. The C4.5 

decision tree is a skewed and deep (depth = 12) with an 

accuracy of 72.25%. When the tree is deep, strange rules 

can be found; for example, HF at the bottom of Fig. 9 (a) 

tree has the negative DVT when HF is positive, a rule 

which is not statistically valid.
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Decision trees from dataset II.

From both a depth and average-number-of-questions

perspective, the complexity of the decision tree in Fig. 9 (d) 

can be considered much more efficient (simpler) than the 

decision tree from the C4.5 algorithm.



  

It was observed that accuracy increases as depth 

increases. At the depth of 12 the GA performance was 

79.50 as compared with the C4.5 performance of 72.25 at 

the same depth. ID3 depth grows until the depth of 16 with 

a performance rate of 80% versus GA 80.25% with the 

depth of 13. These results clearly show that trees 

constructed by GA are both more accurate and more 

efficient. 

Fig. 10 (a) and (b) show the highest performance 

positive prediction rate and the lowest number of questions 

needed, respectively, to determine DVT for the entire test 

set for 200 generations.  

 

 

V.

 

DISCUSSION

 
For the purpose of DVT classification, the genetic 

algorithm is exploited to find shorter and/or more accurate 

decision trees than ones produced by the conventional ID3 

and C4.5 algorithms. Experimental results on two datasets 

suggest that more accurate and efficient decision trees can 

be found by the GA. The efficiency (lower complexity) of a 

decision tree is best defined by the average number of 

questions asked to users, not by the number of nodes in the 

decision tree. In view of this argument, GA trees were 

found to produce more accurate and more efficient trees 

The decision trees produced by the GA have significant 

clinical relevance. The results shown here increase the 

probability of predicting whether a patient would develop 

or have had DVT, which provides advancement in the 

diagnosis of DVT. The more efficient shorter trees add 

additional support for the GA method.  

With more iteration and deepening the depth of the tree, 

the decision trees produced by the GA depth limit clearly 

outperform the one produced by the ID3 method. This

 

study introduced a simple decision tree to help lay people, 

medical technologists, and physicians identify the 

probability of a patient having DVT that prompts for 

testing before any complication occurs.  

The decision trees found by using GA tend to be almost 

full binary trees, i.e., the width is large while the depth is 

short. For future work, the C4.5 pruning mechanism could 

be applied to decision trees produced by GA to make trees 

sparse and to further avoid the potential over-fitting

 

problem. 
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Figure 10.  Prediction rate (a) and number of questions (b) fitness 

function of GA generations on dataset II [11].

than ones produced by conventional methods such as the 

ID3 and C4.5 algorithms.
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