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Abstract—This paper focuses on pose estimation of 3D 

object from 2D images. The base system of Structure from 

Motion is applied. A 3D model with feature points and 

descriptors is prebuilt. 3D-2D matching is employed in 

recognition and pose estimation process. The method of 

pairwise correspondence is proposed. To reduce 

reprojection error of the model, a weighting step is added. 

Viewpoint change of camera is simulated by affine 

transformation in 3D model description. Simulated affine 

feature is modified to keep the model compact. In 

experiment section, the performance of the pose estimation 

system as well as the modified affine feature are tested, and 

the results are compared to related previous research.  

 

Index Terms—pose estimation, 3D model, 3D recognition, 

affine feature 

 

I. INTRODUCTION 

The recognition of 3D object is an important and 

complex problem. Recognition is usually treated with 

hypothesis verification method depending on a 

reconstructed 3D model in literature [1]-[8]. Model based 

recognition systems build correspondence between 

features in testing images and those representing a well 

trained 3D model to find the category or pose of interest 

object in testing image. Features extracted for 3D-2D 

matching could be corners, interest points or image 

contour [9]-[11]. Related investigations are centred on 

two categories: geometric feature based recognition [7], 

[12]-[15] and local feature matching based recognition 

[5], [16], [17]. For the first one, shape features such as 

Fourier or wavelet descriptors [12], [13] are extracted and 

matched between training images and testing images. 

Dense sampling of view space is required and the pose of 

object can only be approximated by the closest training 

image. In [7], aspect-graph approach to 3D object 

recognition is employed. Images from arbitrary views are 

assigned different aspects according to the criteria of 

local monotonicity and aspect distinctiveness. Ref. [9] 

relies on the importance of contour in human visual 

attention. It identifies object by ordering constant 

Curvature Contour Primitives (CCP) generated by simple 

edge filter and linking methods.

 But difficulties are met 
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when dealing with cluttered scene or inconspicuous 

contours. As other boundary-based recognition methods, 

CCP maps only solve very limited viewpoint changes.  

The idea behind shape-based recognition is 

straightforward. But the lack of features representing 3D 

information restricts the performance and application of 

recognition. In addition, since shape is the only descriptor, 

foreground and background must be segmented 

accurately. The two reasons have made it inapplicable for 

robotic manipulation, industrial inspection and places 

where high precision and the ability of dealing with 

cluttered scene are required [3], [7], [11], [18]. A more 

efficient and precise method is to estimate pose by 

matching local features of an image to a prebuilt 3D 

model. Model of interest objects can be built by laser 

scanner [19], [20], as well as stereo system [1], [2], [16], 

[21], [22]. The former results in high precision that can 

be applied to defects detection of automobile surface [19], 

but is equipment demanding and time consuming. Stereo 

system method is more effective when a larger estimation 

error is acceptable, for example the manipulation of a 

household robot [3].  

Local image region matching is widely used in 

recognition, 3D reconstruction, image registration and 

robotic manipulation. Matching procedure contains two 

steps: region detection and description. Regions as well 

as descriptors are represented by keypoints. Detection 

locates regions with distinctive texture or gradient 

distribution. Each region is assigned a descriptor 

invariant to some image transformations. Harris [10] uses 

second moment matrix to locate interest region. The DoG 

detector in SIFT [11] is image scaling, rotation and 

translation invariant. While rotation and translation can 

be normalized, no detector is fully scale invariant. The 

common solution is to simulate images with different 

scale parameters. For instance, SIFT creates octaves and 

levels of images blurred by Gaussian filter with different 

variance. In some cases, parts are chosen to represent 

local image feature. The 3D-2D matching becomes index 

matching between parts. Ref. [6] creates a codebook of 

local appearance surrounding Harris points and matches 

testing image patches to the codebook. Ref. [5] extends 

parts matching by introducing the concept of canonical 

view. Object model is defined by the canonical parts {Pch, 

Pck, ...} and their geometrical relations {Hchk, ...}. Object 

Lecture Notes on Information Theory Vol. 3, No. 2, December 2015

©2015 Lecture Notes on Information Theory 65
doi: 10.18178/lnit.3.2.65-69



class label is determined by matching pair of candidate 

parts to pair of canonical views in each model. The 

matched model that yields the least residual error is 

assigned to the testing image. Pose estimation is achieved 

by finding the dominant canonical view by comparing 

residual error. Transformations, such as scale and rotation, 

of candidate parts are computed with respect to canonical 

views.  

In this paper, a 3D model consisting of weighted points 

is proposed. Instead of Structure from Motion (SfM) [1]-

[3], the model is created by pairing 3D point sets. Each 

set is reconstructed from two images. For 2D to 3D 

matching, simulated affine features are added to the SIFT 

descriptors from original training images and demonstrate 

that our modified affine feature could represent viewpoint 

change by longitude. Pose estimation is regarded as a PnP 

problem [23] in this paper. Comparison experiment on 

pose estimation is performed with and without affine 

features. The paper is organized as follows. In Section II, 

a 3D model is prebuilt for interest object. Our method of 

weighted 3D model is detailed. In Section III, recognition 

and pose estimation is achieved using rigid and 3D-2D 

perspective transformations. Modified affine features are 

used to simulate features of images when viewpoints 

deviate by a large angle to training images. Section IV 

presents experimental results on recognition rate, impact 

of modified affine features and pose estimation. In 

Section V, potential applications of the recognition and 

pose estimation method is explored. Future work to 

improve recognition rate and precision is mentioned in 

brief.  

II. 3D WEIGHTED MODEL 

A. 3D Model from Pairwise Merging 

3D model building problem can be solved by SfM in 

previous works [1]-[3]. The problem of reconstruction is 

formulated as a non-linear least square minimization of 

the reprojection errors over all calibration parameters, 

camera positions and world coordinates. In this paper, 3D 

model of interest object is reconstructed through merging 

3D point sets derived from neighboring pairs of images. 

The idea behind pairwise correspondence is similar to [5]. 

In [5], a set of paired parts across training images is 

derived by grouping algorithm. Canonical views {Pch, 

Pck, ...} and their geometrical relations {Hchk, ...} are used 

to represent 3D object. Instead of part matching, 3D point 

sets are merged from nearby pairs and the 3D structure of 

the object is reconstructed.  

As the first step of reconstruction, SIFT feature is 

taken to find 2D-2D matching within a pair since it has 

advantages over many other local descriptors [24]. 

Training images in the same pair differ in viewpoint by 

no more than 20 degrees where the correct matching ratio 

is above 80% [11].  

The camera frame, Oc, of the first image in training 

sequence is regarded as the world frame, Ow. 3D point 

sets are alighed from every image pairs to Ow. Each point 

set is constructed from a pair of images by epipolar 

constraint:  

0jij
T

i xFx                                 (1) 

Ransac [25] is used to guarantee that correspondences 

are correctly matched inliers. For neighboring pairs {Ii-1, 

Ii}, {Ii, Ii+1} connected by the same image Ii, two sets of 

feature points {x
(i-1)

i-1, x
(i-1)

i}
1
, {x

(i)
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merges the corresponding 3D points in both sets together, 

while non-intersection points are transformed by 

triangulation. The pairwise merging algorithm is detailed 

in Table I.  

TABLE I.  PAIRWISE CORRESPONDENCE ALGORITHM  

Input: xi, 2D coordinates of extracted feature points in image Ii;  
            n, the number of training images;  

           {x(i)
i, x

(i)
i+1}, i=1, 2, ..., n-1, correct matches of image pair 

{Ii, Ii+1}; 
           {X(i)}, i=1, 2, ..., n-1, 3D coordinates of point set 

reconstructed from pair {Ii, Ii+1}; 

Output: {Xm}, 3D coordinates aligned to world frame Ow; 
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End 

B. Weighting 3D Points 

Each reconstructed 3D point is weighted by its 

reprojection error. Given that {X
(i)

} is reconstructed from 

{x
(i)

i, x
(i)

i+1}, the reprojection error as well as the weight is 

composed of two parts:  

( , ) 1( , ) 2( , )error i k err i k err i k                 (2) 

)),(exp(=),( kierrorkiweight                  (3) 

, 

2
1

)()()(

2 ))()((),(2 kxkXPkierr i
iii

 , P1
(i)

 and P2
(i)

 are 

3 4  camera matrix, k = 1, 2, …, n
(i)

, n
(i)

 is the number of 

correct matches in pair {Ii, Ii+1}.  

For a merged point Xw(j), i.e. the weighted average of 

3D points reconstructed repeatedly from more than one 

pair, the confidence of the point is in proportion to how 

many time it is reconstructed as well as the reprojection 

error of each reconstructed 3D coordinate. 

Correspondence between Xw(j), j = 1, 2, …, N, and 

                                                           
1 For x(i-1)

i(k), the upper index (i-1) denotes the pair {Ii-1, Ii}, the lower 
index i means that the 2D point is extracted from the Ii and k means it is 

the kth point in set {x(i-1)
i}. 

2

i
X xc  denotes 3D-2D point correspondence.  
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{Xt
(i)

(k)} is defined as jkiind ),( . N is the number of 

3D model points after alignment and merging.  
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In (4) and (5), Xt
(i)

(k) satisfies the constraint of 

jkiind ),( ,   is taken as 
3

2.5 10  empirically.  

The idea of weighting 3D points is to reduce the 

confidence of points with relatively high reprojection 

error, and to regard points corresponding to multiple pairs 

as more reliable. It is demonstrated that the model error is 

reduced after the weighting process in Section IV. 

III. 3 RECOGNITION AND POSE ESTIMATION 

A. 2D-3D Feature Matching 

Image distortion introduced by viewpoint change can 

be approximated by affine transformation [26] where 

camera distortion is neglected. Affine map depicts tilt of 

a planar fairly well, but not tilt of 3D object with complex 

structure. However, in practice, affine invariant 

algorithms [2], [3] have derived results sufficient to deal 

with image matching problem where viewpoint change is 

within a certain range. With the same idea of scale 

invariant features, viewpoint change is simulated by 

image affine transformation. One thorny issue is that it 

would usually introduce tens of thousands of new 

descriptors to the original 3D model. Ref. [3] deals with 

the problem by quantization and [2] facilitates matching 

by BBF method.  

In our implementation, training images are taken to be 

0 , at an interval of about 15 degrees by longitude. 

Tilts of }2,2{t  corresponding to }60,45{ are 

performed on each training image, to simulate the whole 

view space. To keep the 3D model compact, descriptors 

corresponding to 2D points not extracted in the original 

training images are discarded. The remaining affine 

transformed descriptors are added to 3D model. After the 

viewpoint change simulation, number of descriptors for 

one 3D point may increase, while the number of 3D 

points, N, does not change. 3D point cloud and camera 

positions are shown in Fig. 1. 

For 3D-2D matching, the ratio test [11] of the nearest 

and second nearest matches between descriptors of 3D 

model and those of testing image is used. 

 

Figure 1.  Reconstructed 3D milk bottle and one out of 24 training 
images.  

B. Pose Estimation 

Ransac and Gradient Descent Optimization [27], [28] 

are combined to estimate intrinsic and extrinsic 

parameters. Reprojection error of weighted model points 

is used as correct matching criterion. Optimization 

minimizes the reprojection error as:  

 
j

TRK
jxtsTjXwRKjW ))())((()(min

,,      (6) 

where Xw is 3D model point coordinate, xt is 2D testing 

image point coordinate, K is camera calibration matrix, R 

and T are the rotation and translation respectively.  

IV. EXPERIMENTAL RESULTS 

The performance of 3D weighted model and modified 

affine feature are tested in this section. Recognition rate 

and pose estimation are evaluated. Algorithm codes are in 

Matlab and C++ and run on a PC with 2GHz CPU.  

A. 3D Weighted Model 

Reprojection error is evaluated on 24 training images. 

The error decreases by a large margin due to weighting 

process in Fig. 2. It is reduced by 50.32% at 3105.2  . 

The summation of reprojection error of {Xt
(i)

(k)} is the 

objective function in optimization. For training images, 

the error of reconstructed points is enlarged by merging 

{Xt
(i)

(k):ind(i,k) = j} into one model point Xw(j) and it 

decreases with   exponentially as in (5).  

 

Figure 2.  Average reprojection error of 3D model as a function of  . 

Both weighted model and unweighted model are evaluated.  

 

Figure 3.  Average reprojection error of 12 testing images as a function 

of  . Both weighted model and unweighted model are evaluated.  

Reprojection error evaluation is applied to 14 testing 

images, 15 pose estimations are implemented for every 
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image. The average reprojection error of all 3D-2D 

correspondences with respect to   is shown in Fig. 3. 

The introduction of weighted 3D model has greater effect 

than the variation of  . In following experiments, 

weighted model are applied for pose estimation and 

choose   to be 3105.2  , the value that yields the least 

error. Reprojection error of model point is reduced by 

4.12% at 3105.2  .  

B. Correct Recognition Rate, Pose Error and 

Translation Error 

Table II compares the recognition rate, average 

rotation and translation error under different testing 

conditions. The threshold for correct detection is set as 5 

cm and 22.5 degrees, the same with [3]. Rotation error is 

calculated as the quaternion angle of testing image to 

ground truth. Pose estimation is performed 195 times in 

total for testing images at large t and 180 times for small t. 

The recognition rate lies between correct detection rates 

of SA and SA+Q in [3].  

TABLE II.  RECOGNITION RATE, AVERAGE ROTATION AND 

TRANSLATION ERROR WITH RESPECT TO GROUND TRUTH 

                                    recognition rate   R error (degree)   T error (cm) 

not affine and t=0        0.8556                  4.1407                 1.5822 

affine and t=0              0.8444                  4.3976                 1.4946 
not affine and large t   0.7625                  4.4745                 1.5574 

affine and large t         0.8328                  3.7578                 1.3220 

 

The presence of affine feature has little impact on 

testing images at 0t . However, at large t, the 

introduction of modified affine features boosts 

recognition rate. The rate is close to that at 0t , which 

indicates that the simulation method in Section III.A is 

effective to describe 3D viewpoint change. It is also 

noticed that rotation error and translation error are 

reduced by 6.3% and 15.1% respectively. Pose and 

position accuracy is also increased.  

C. Recognition Rate with Respect to Acceptable 

Rotation Angle Error 

 

Figure 4.  Recognition rate of 3D model with and without affine 
features, and testing images at different t. The angle error threshold 

varies from 5 to 25 degrees.  

The recognition rate in Fig. 4 is higher at t=0 than at 

large t. One reason is that a lot more features are 

extracted from training images than from affine 

transformed images. More correct 3D-2D 

correspondences can be found for testing images at t=0. 

The addition of affine features is unnecessary and brings 

more mismatches which account for recognition rate 

decrease by a small margin (data points represented by 

squares and triangles).  

For arbitrary t, the pose estimation problem in real 

world, the recognition rate is higher for 3D model with 

affine features. The augmented 3D model descriptors 

contain more correct correspondences to testing images 

that deviate from t=0 by a large angle. 

V. CONCLUSION AND FUTURE WORK 

The 3D modeling method proposed in this paper has 

two major differences from existing ones. First, the 

pairwise correspondence is robust since it does not 

depend on optimization. However, in the usual camera 

motion tracking problems, all camera parameters and 

world point coordinates need to be determined by 

minimization of non-linear least square problem. Second, 

the weighting process in Section II.B could describe the 

3D model more precisely. It reduces reprojection error of 

model point by 50.32% at 3105.2   in Fig. 2. Error of 

testing image points also decreases by 4.12% on average 

at the same  .  

To simulate viewpoint change, the model descriptors 

are augmented with SIFT features from affine 

transformed images. Only features corresponding to 

points that already exist in the 3D model are retained. 

Number of points in 3D model is not augmented. SA is 

modified by leaving out the dependence of epipolar 

constraint and searching to locate simulated affine 

features in nearby views [3]. The feasibility of this 

modification are verified by affine transformation and 

pose estimation experiments in Section IV.B, IV.C.  

Compared to state-of-the-art 3D modeling algorithm 

[2], [3], our pairwise correspondence is more robust but 

not as accurate. The 3D point set reconstructed from a 

pair of images has negligible error. Most of the error 

comes from matching step. One of our future tasks is to 

improve pairwise matching and weighting, especially the 

former, to reduce model error.  

In Section IV.D, special attention is paid to recognition 

rate with respect to angle error. Our plan is to apply the 

result of pose estimation to determine position of an 

interest region relative to the whole rigid body. Possible 

applications could be robotic manipulation and non-

tactile component inspection.  
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