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Abstract—The orthogonal invariant descriptors are among 

the best region based shape descriptors which are used in 

many image processing and pattern recognition applications. 

The Chebyshev Harmonic Fourier Moments (CHFMs) are 

one of such invariant descriptor. They, however, suffer from 

high time complexity and numerical instability at high 

orders of moment. In this paper, we propose a fast method 

based on the recursive computation of radial kernel function 

of CHFMs which not only reduces time complexity but also 

improves their numerical stability.  

 

Index Terms—Chebyshev harmonic Fourier moments, 

recursive method, numerical stability 

 

I. INTRODUCTION 

Orthogonal Rotation Invariant Moments (ORIMs) find 

a wide variety of applications and imaging science is one 

of the significant application areas. The ORIMs are 

distinguished from the other sets of moments by certain 

invariance properties which play the fundamental role in 

image understanding, symmetry detection and estimation 

and information retrieval. ORIMs possess the property of 

being invariant to rotation and can be made invariant to 

translation and scale after geometric transformations [1], 

[2]. Jacobi-Fourier Moments (JFMs) are a generic class of 

ORIMs recently introduced by Ping et al. [3] and further 

investigated by Hoang and Tabbone [4]. They provide a 

wide range of ORIMs whose radial kernel functions are 

polynomials. The widely used Zernike Moments (ZMs) 

[5], pseudo-Zernike Moments (PZMs) [6], orthogonal 

Fourier-Mellin moments OFMMs [7], and 

Chebyshev-Fourier moments [8] are special cases of JFMs. 

Ping et al. [8] introduced CHFMs and observed it to 

possess better noise sensitivity and reconstruction 

capability as compared to OFMMs. CHFMs have found 

several applications in image processing, pattern analysis 

and computer vision. However, they are less popular due 
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to their low image reconstruction capabilities and 

numerical instability at low order moments as compared to 

ZMs, PZMs, and OFMMs. The computations of CHFMs 

involve factorial terms, which are computation intensive. 

Upneja and Singh [9] have proposed fast computation of 

JFMs of which CHFMs are a special case. However, when 

the method [9] is applied on the CHFMs, the number of 

arithmetic operations involved in the coefficients of the 

recursive relation is very high. Another method uses 

8-way symmetry for the computation of the radial function 

( )
p

R r  involved in CHFMs [10].  In this paper, we present 

a recursion based fast algorithm which reduces the time 

complexity of the CHFMs. The fast algorithm is based on 

the recursive computation of the radial and angular kernel 

functions of the moments. The proposed recursive method 

not only reduces the time complexity of moment 

computation but also enhances numerical stability of high 

order moments which is reflected in the lower values of 

image reconstruction error. The numerical stability is 

enhanced due to the fact that the proposed algorithm does 

not involve the direct computation of the factorial terms of 

large integers which appear in the radial polynomial 

( )
p

R r . 

The rest of the paper is organised as follows. An 

overview of CHFMs and its computational framework for 

digital images is presented in Section 2. A fast 

computational approach for the radial polynomials and 

angular functions is developed in Section 3. Detail 

experiments are conducted in Section 4 analyzing the time 

complexity and numerical stability. Section 5 concludes 

the paper. 

II. CHEBYSHEV HARMONIC FOURIER MOMENTS 

(CHFMS) 

CHFMs of order p and repetition q with 0p   and

0q   are defined in polar form as [8]: 
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where p is a non-negative integer and q is an integer. 

The function 
*
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V x y  is the complex conjugate of the 

CHFMs basis function ( , )
pq

V x y  defined by: 
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where ,
22 yxr  .

 
The radial part of the basis function is: 
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The orthogonal property for radial kernel is given as: 
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The orthogonality of basis function is given as: 
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For p=pmax, q=qmax, the total number of CHFMs is 

  qp maxmax
211  . 

In digital image processing, the image function ),( rf  

is discrete and defined in a rectangular domain with the 

pixel locations identified by the row and column 

arrangement. Let ),( ki
 
be a pixel, the index i denotes the 

row position and k the column, with ,1,...,1,0,  Nki  

where the resolution of the image is NN   pixels. The 

top left corner of the rectangular domain represents the 

origin )0,0(  of the image. We map the pixel location 

),( ki  into the coordinates ),( yx ki  within the unit disk 

using the following transformation: 
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The coordinate ( , )
i k

x y  represents the center of the 

),( ki  pixel grid with the two opposite vertices defined by 
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where x  and 

y  represent the horizontal and vertical separation 

between the centers of two pixels which are expressed as: 

D
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The CHFMs can now be described in the Cartesian 

coordinates and their discrete formulation can be 

facilitated by converting (1) into Cartesian system defined 

by: 
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Equation (9) can be derived from (1) after replacing 

yxr
22   and   by . The discrete 

implementation of (9) assumes the form: 
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It is difficult to derive an analytical solution to the 

double integration on the r.h.s of (10), therefore, normally 

a zeroth order approximation is considered for its 

evaluation. This leads to: 
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Suppose that moments of all orders 
max

p p
 
and 

repetition 
max

q q  are given, then the image is 

reconstructed as follows: 
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The image reconstruction error  is defined by: 
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III. FAST COMPUTATION OF CHFMS 

It is clear from (11) that the computation of M pq  

involves the computation of the kernel function 

),(* yxV kipq  at N
2

 locations. The computation of 

),(* yxV kipq  involves the computation of the radial 

polynomial )(rR p  and the angular kernel function e
jq

 

both of which require heavy computational load. The order 

of time complexity of a polynomial )(rR p  is )( pO . 

When all CHFMs upto a maximum order pmax
 are 

computed then the time complexity is )(
2

maxpO . The time 

complexity of the angular function e
jq  is )(

maxqO  

which is also very high because it involves the 

computation of the trigonometric functions )cos( q  and 

)sin( q  which are computation intensive. We propose a 

fast method based on recursion to evaluate ).(rRp  The 

proposed recursive method reduces the time complexity of 

a polynomial from )( pO  to )1(O  and time complexity of 

all CHFMs from )(
2

maxpO  to )(
maxpO . Also, the angular 

functions are computed using recursion without making 

use of trigonometric functions [11].  
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A. Fast Computation of Radial Functions 

We propose the following recursive relation to compute 

the radial functions )(rR p  expressed by (3), which can be 

written as: 
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where: 
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These relations can also be derived from our work in [9] 

for the fast computation of the JFMs of which CHFMs is a 

special case. However, the formulation in [9] requires 

much more arithmetic operations to compute 

,1...,,1,0),(  pprC p  than that given in the proposed 

approach. It is clear that the order of the time complexity 

of the radial polynomials has been reduced to )1(O  from 

)( pO . Also, the recursive formulation does not involve 

the direct use of the factorial terms. 

B. Fast Computation of Angular Functions 

The angular function )sin()cos(  qjqe
jq  , can 

be computed recursively using a method developed by 

Singh and Walia [11]. At a given pixel ),( ki , the functions 

cos( )  and )sin(  are computed by: 

r

y
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For 1q , the following recursive expressions are used: 

   
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with 1)0cos(   and 0)0sin(  . The values of )cos( m , 

and )sin( m  are saved in two tables. 

IV. EXPERIMENTAL ANALYSIS 

The proposed method for the computation of the 

CHFMs is compared with the conventional 

implementation. The comparison is performed for the 

following algorithms. 

Algorithm A: This is the direct implementation of the 

CHFMs without recursion. 

Algorithm B: This is the recursive algorithm given in 

[10] for the computation of JFMs. We have computed 

CHFMs using the relationship between JFMs and CHFMs. 

Algorithm C: This is the proposed algorithm which uses 

recursion of the radial and angular functions. 

These algorithms are implemented in Visual C++ 6.0 

under Microsoft Windows environment on a PC with 3.0 

GHz CPU and 2 GB RAM.  

Since the speed of the algorithms doesn’t depend on the 

image content, we use a 256 256  pixels image Lena for 

the experiments as shown in Fig. 1. The CPU elapse time 

versus the order and repetition of moments are plotted in 

Fig. 2. We have plotted the graphs for 5
maxmax

 qp  

through 50 for the purpose of time analysis. It is shown 

that the direct implementation of CHFMs (Algorithm A) is 

very slow as compared to the proposed algorithm 

(Algorithms C). Algorithm B which gives comparable 

results with the proposed approach uses the recursive 

technique for the computation of JFMs. CHFMs are 

computed using the relationship between JFMs and 

CHFMs. However, the formulation is the recursive 

approach for JFMs but it requires very high arithmetic 

operations for the computation of CHFMs from JFMs. The 

proposed algorithm provides significant reduction in CPU 

elapse time for CHFMs of all orders and repetitions. The 

trend of CPU elapse time with respect to image size is 

plotted in Fig. 3. This image is resized to various scales for 

performing experiments when comparison in speed is 

performed on various scales of the image. Again, the 

qualitative trend of the CPU elapse time is similar to that 

obtained in Fig. 2. This is very useful for real time 

applications and applications involving large databases or 

on devices with low computation power.  

 

Figure 1.   Gray scale Lena image of 256×256 pixels resolution. 

 

Figure 2.   CPU elapse time (sec) for the computation of CHFMs for 
Algorithm A, Algorithm B and Algorithm C for Lena image with 

resolution 256×256 pixels and for various orders and repetitions of 

moment from pmax=qmax=5 through pmax=qmax=50. 

 

Figure 3.   CPU elapse time (sec) for the computation of CHFMs for 
Algorithm A, Algorithm B and Algorithm C at fixed order and repetition 

pmax=qmax=20 and for various resolutions from 64×64 pixels through 

1024×1024 pixels. 
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The direct method becomes numerically unstable at 

much lower values of pmax and qmax than the proposed 

recursive method. For the direct method, after reaching a 

minimum value of  , the reconstruction error   starts 

increasing at a very high rate. On the other hand the 

increase in   after reaching its minimum value is very 

small w.r.t. pmax and qmax for recursive method. This 

demonstrates the stable behavior of the recursive method. 

It is also observed that the recursive method provides 

lower values of   than the direct method. 

 

 

Figure 4.   Reconstructed Lena image of 256×256 pixels using various 
CHFMs for different values of pmax = qmax. 

The direct computation of CHFMs is numerically 

unstable which is reflected in the form of distortion in 

reconstructed images. Theoretically, higher values of 

order and repetition of CHFMs must provide reconstructed 

images closer to the original image. This characteristic is 

practically not achievable because of the finite precision 

arithmetic used in the digital computers. It is shown that 

the major cause of numerical instability is due to factorial 

terms involved in the polynomial function [9]. The 

proposed recursive computation of CHFMs polynomials 

not only reduces time complexity, but it also improves 

numerical stability. The improvement in numerical 

stability is reflected in the quality of reconstructed images 

at higher orders of moment and lower values of mean 

square reconstruction error  . This is demonstrated by 

reconstructing the Lena image of resolution 256×256 from 

the CHFMs. The reconstructed images and the 

reconstruction error   are depicted in Fig. 4. Algorithm B 

and Algorithm C gives the same results, because both are 

the recursive formulation of the radial functions. It is 

observed that the direct method becomes numerically 

unstable after a certain order of moments, while the 

recursive method remains stable for very high values of 

pmax and qmax. The direct method becomes numerically 

unstable at much lower values of pmax and qmax than the 

proposed recursive method. The average reconstruction 

error  as a function of pmax and qmax (for convenience, 

pmax = qmax) is plotted in Fig. 5 for image size 256×256. It is 

observed that the average reconstruction error decreases 

initially when pmax and qmax increase. Both for the direct 

and recursive methods   decreases until pmax = qmax 

reaches a value at which   is minimum. After that,   

starts increasing showing the numerical instability in 

CHFMs coefficients.  

 

Figure 5.   Average reconstruction error   vs. moment order and 

repetition, pmax and qmax for 256×256 pixels image. 

V. CONCLUSION 

A fast recursive algorithm for the computation of the 

CHFMs is presented in this paper. The proposed approach 

uses recursive relations for the computation of radial and 

angular functions which are otherwise computation 

intensive. It is observed that the proposed method reduces 

the high computation load as compared to the existing 

direct method which is a great improvement in speed. 

Therefore, the fast computation of CHFMs would be very 

useful in many image processing and pattern recognition 

problems, such as template matching, character 

recognition, etc., especially in the real time environment. 
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