
Paired Transcriptional Regulatory System for 

Differentially Expressed Genes 
 

Aurpan Majumder 
Dept. of E.C.E, National Institute of Technology, Durgapur, India 

Email: aurpan.nitd@gmail.com 

 

Mrityunjay Sarkar 
Dept. of E.C.E, Durgapur Institute of Advanced Technology and Management, Durgapur, India 

Email: mrityu1488@gmail.com 

 

 

 
Abstract—A fully functional gene regulatory network can 

be formed using gene-gene and/or gene-protein interactive 

patterns. To maintain a healthy cell cycle, it is necessary to 

have a proper control of the regulatory proteins in the 

network. Excess protein concentration may lead to beyond 

control division of the healthy cells causing cancer. In this 

context, transcriptional regulators (proteins) are 

responsible for changes in gene expression levels across 

different developmental stages. In our work we have 

extended a recently developed procedure to find out the 

pair(s) of TFs, which can control a target gene from a linear 

prospective. Here, we have explored the pairwise regulatory 

action through mutual information and spline regression. In 

the result segment we have shown that the controlling 

action between these two methods is dependent upon the 

dimension (number of samples) of the data. For large 

dimension spline regression based controlling shows better 

result that MI, and vice versa for smaller dimensions.  
 

Index Terms—transcription factor, mutual information, 

spline regression, differentially expressed (DE) genes, 

colorectal (colon) cancer 

 

I. INTRODUCTION AND THEORY 

A gene regulatory network is a system where genes 

and proteins bind to each other and act together 

controlling various cellular functions [1].An eukaryotic 

organism can exist only when all its cells function 

according to the rules governing cell growth and 

reproduction; indicating the existence of a regulatory 

network under control. Though there are some external 

factors responsible for cell division (UV light, X-rays, 

chemicals, tobacco products, viruses are responsible for 

cancerous growth) it is ultimately the signalling proteins 

which cause the nucleus to stimulate the cell division. 

These proteins causes a signal transduction cascade 

which includes a membrane receptor for the signal 

molecule, intermediary proteins that carry the signal 

through the cytoplasm, and transcription factors (T.F) in 

the nucleus that activate the genes for cell division (cell 

cycle genes) [2].In each step of the pathway one T.F or 
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protein activates the next; however, some TFs can 

activate more than one protein in the cell.  

Microarray time series data gives us a possible way to 

identify transcriptional regulatory relationship among the 

genes [3]. In our previous work [4] we have utilised the 

concept of Pearson's correlation coefficient to identify 

potentiality of regulatory action of two genes on a target 

gene. Although this traditional method has been 

successfully applied to find functionally correlated genes, 

it has a limitation of highlighting the linear regulatory 

relations. However, there still remains a fair chance to 

explore the nonlinear association of TFs and target 

(regulated) genes (especially with large time series 

microarray data). Thus to discover the total potential of 

nonlinear regulatory operation we have indulged 

ourselves towards mutual information [5], [6] and spline 

regression [7] based approaches to construct the gene 

regulatory networks. 

In this work to check the nonlinear regulation of the 

T.Fs over the cell cycle process we have used varied data 

sets. Firstly, we used the budding yeast, Saccharomyces 

cerevisiae cell cycle data [8]. In the second case, 

colorectal (colon) cancer data which accounts 10% to 

15% of all cancers and is the second leading cause of 

cancer-related death in industrialized countries [9].  

The target genes mentioned above are those having 

changed expression levels across different conditions, in 

other words they are the differentially expressed (DE) 

genes. Corresponding to each DE gene we predict the 

possible TF pairs which in combination conduct non 

linear regulation of the target gene towards altered 

expression levels across different stages of cell cycle.  

The rest of the paper is as follows. In next section we 

have discussed about the Methodology. A detailed view 

of the problem and its implementation on the datasets has 

been given in Results and Discussion section. The paper 

concludes with Conclusion and Future work. 

II. METHODOLOGY 

Step 1 of the algorithm is used to find out the 

differentially expressed (D.E) genes between the two 

conditions. Here we have implemented the same using 

DEGseq [10] (It is an R package to find the differentially 
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expressed genes from the gene expression value itself. 

Here depending upon expression values of genes at 

different time instants and by a particular threshold ‘p-

value’/’z-score’/’q-value’ D.E genes are computed). 

ALGORITHM. BEST POSSIBLE COMBINATION OF TF PAIRS 

 

Input:  gEmtx1,  gEmtx2,  TF1, TF2, TFg1, TFg2,  1 

Output:  NLM1, NLM2, Mv1, Mv2, Mv, bTFp1, bTFp2, TFp1,    

                TFp2  
 

      

Step1.       DEDEGexp(gEmtx1,set expression columns for  

                 conditition1,gEmtx2,set expression columns for  
                 condition2) 

Step2.    c  choose mode of operation 

            for i in 1 : X do 

               for j in 1:Y do 

                  r1 rbind(DE1[i,],TF1[j,]) 

                  nr1 transpose(r1) 
                  r2 rbind(DE2[i,],TF2[j,]) 

                  nr2 transpose(r2) 

                if c ==1 then 

                  NLM1 [i,j]NonLinMI(nr1,
 
 ) 

                  NLM2 [i,j]NonLinMI(nr2,   )    

               else 

                  NLM1 [i,j] NonLinSP (DE1[i,],TF1[j,]) 

                  NLM2 [i,j] NonLinSP (DE2[i,],TF2[j,])    

              end if 

            end for 

          end for 

 

Step3.  for i in 1:X do 

                  m0  
                for j in 1:Y-1 do 

                   for k in j+1:Y do 

                     mm+1 
                     Mv1[i,m]NLM1[i,k]*NLM1[i,j] 

                     Mv2[i,m]NLM2[i,k]*NLM2[i,j] 

                   end for 

                 end for 

              end for       
 

Step4.       Mv Mv1-Mv2 

              for i in 1:X do 
                 M[i] min(Mv[i,]) 

                 n 0 

               for j in 1:Y-1 do 

                   for k in j+1:Y do 

                      nn+1 

                      if (M[i,1]==Mv[i,n]) 
                       Indx1 j 

                       Indx2k 

                       bTFp1[i] TFg1[Indx1] 
                       bTFp2[i] TFg2[Indx2] 

                     end if 

                   end for 

                 end for 

               end for 

 

Step5.   M   Y
2c  

             for i in 1 : X do 

                   for l in 1: M do 

                       TFp1[i,l] 0 

                       TFp2[i,l] 0 

                   end for 

                     V[i]=M[i]+ v  

                      n0, s0 

                for j in 1:Y-1 do 

                  for k in j+1:Y do 

                       nn+1 

      if MV[i,n] < V[i,1] then 

        ss+1 

        TFp1[i,s]TFg1[k,1] 
        TFp2[i,s]TFg2[j,1] 

      end if 

                   end for 

                 end for 

              end for 

 
%%%% End of main routine %%%%%% 

 

NonLinMI function (nr,
 
 ) { 

V mutualInfoAdjacency (nr,discretize columns, set entropy 

estimation method, set the number of discretization beans) ^   

} 

 

NonLinSP  function (DE,TF) { 
sm.spline (DE,TF,set the order of spline function) 

} 

 

Step 2 of the algorithm is dedicated to compute the 

nonlinear association between D.E genes and 

Transcription Factors (T.F) between the two conditions 

through mutual information and spline regression. Let 

there be X number of D.E genes (from Step 1) and Y 

number of TFs. DE1 stands for gene expression matrix of 

DE genes under condition1 and DE2 correspondingly for 

condition 2. Similarly, TF1 happens to be the gene 

expression matrix of TFs under condition1 and TF2 for 

condition 2. Here X number of D.E genes will act as the 

target genes. We have used a function NonLinMI to find 

out the symmetric uncertainty based mutual information 

(MI) adjacency measure between each TF and the target 

gene in each condition; in a similar fashion we have used 

another function NonLinSP to find the nonlinear 

association between D.E and T.F by spline regression 

based measure. These two user defined functions 

compute the corresponding measures by invoking two R 

package functions mutualInfoAdjacency and sm.spline (in 

this work we have taken the order =3, cubic spline). Each 

of these approaches will create two matrices NLM1 and 

NLM2. 

In Step 3 we multiply all possible pairs of row 

elements of each matrix separately indicating 

multiplication between every pair of nonlinear 

association values obtained between TFs and the target 

gene. As shown in our ALGORITHM the multiplication 

results are stored in the set of matrices Mv1 and Mv2 

respectively. As we are multiplying each possible pair so 

for Y number of columns (T.Fs) there will be Y
2c number 

of combinations and accordingly we can say that Mv1 

and Mv2 will have X number of rows and Y
2c number of 

columns. 

Here high multiplication result suggests that the 

dependency of the target gene with respect to two TFs is 

high, and a low value suggests that the dependency is low. 

In other words a high value means strong regulatory 

action whereas a low value point towards weak 

regulation. 

In Step 4 we perform subtraction between the 

multiplied results between the two conditions (Mv). 
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Keeping in mind that small subtraction result suggests 

that the regulation of the target by both TFs in each 

condition is near about same and a relatively large 

subtraction value highlights the effective regulation of 

the target by both TFs between conditions are not equal. 

We introduce a filtering through the selection of TF pairs 

having small subtracted values between the two 

conditions and the best TF pair will be the one having the 

minimum of these values. Best TF pairs for a particular 

target gene are stored in bTFp1 and bTFp2.  

Step 5 is an extension of Step 4. Here by taking a 

range of values within a limit and the subtracted result of 

the best TF pair as the reference we search for that TF 

pairs which have subtracted values within that limit.  

Let for target gene 1, T.F pair x and y have given the 

minimum subtraction value and let the value be M [1]. 

Now setting the limit mentioned above as v  we select 

those pairs of TF genes who have subtracted outcomes 

within the range M [1] + v  

We repeat the above mentioned procedure for 

remaining X-1 number of target genes. 

III. RESULTS AND DISCUSSION 

As discussed previously we have tested our 

ALGORITHM on two publicly available data sets. First 

one is the budding yeast, Saccharomyces cerevisiae cell 

cycle data. Details about the data set, how the DE genes 

and TFs are found are discussed in [4]. As mentioned in 

[4] there are in total 285 DE genes and 17 TFs. At first 

we do proceed via NonLinMI function to search for 

significant TF pairs against target genes by mutual 

information based adjacency measure. In table I we have 

given the significant TF pairs and their corresponding 

target genes. 

Next, we proceed via NonLinSP function to find the 

same but this time through spline regression approach. In 

this context Table II enlists the significant TF pairs and 

their corresponding target genes. 

Another data set that we have used for testing is the 

Affymetrix expression data of colon cancer tissues, 

having 22,278 genes in total, in two conditions. There are 

in total of 111 colon tissues from tumours and adjacent 

noncancerous tissues out of which 49 tissues are 

noncancerous and 48 are cancerous tissues. Details of the 

data set can be found in [11]. 
Again on the other side, we have searched for TFs 

from [12]. By matching the IPI id provided in [12] with 

the IPI ids in our data set we found a total of 1065 TFs. 

After finding the TFs we extracted the TFs in both the 

cases from the entire gene expression data. Then from the 

Total  

number of DE genes found across these two conditions is 

56. DE genes are found using DEGseq [10]. These 56 DE 

genes will act as targets. Now, as mentioned in Step 4 

and Step 5 of ALGORITHM we have searched for best 

TF pairs as well as other TF pairs showing good 

prediction power corresponding to target DE genes 

through MI and spline regression measure. In Table III 

and Table IV corresponding to colon cancer we have 

enlisted some of the DE genes and with respect to each of 

them the possible TF pair(s) obtained using MI and 

spline regression methods respectively. 

TABLE I.    BEST COMBINATION OF TF PAIRS CORRESPONDING TO 

TARGET GENES FOR YEAST CELL CYCLE DATA THROUGH MUTUAL 

INFORMATION ADJACENCY MEASURE  

Target (DE) TF pair(s) 

PRM5, BUL2 ACE2, FKH2 

YDR124W, YER010C ACE2, MCM1 

PGM2 ACE2, CST6 

STE2, TIF1, RSA1, YMR111C ACE2, ASH1 

YPC1, BSC1, MCT1, YML119W MCM1, ASH1 

PRB1 STE12, SWI6 

DSE12, RIM21, GPD1, BAP2 RLM1, STP1 

YJL160C, MOG1, LTV1, 
YKL044W, MFG1, GYP7, SRB7, 

PCM1, IME4, LSB1, DIA4, 

YSC84, HXT4, AYR1, YJR026W, 

PSO2, MRPS18, IMA2, 

YOR029W, YOR053W, MKK1, 

YPL039W, YPL062W 

TEC1, STB1 

GLK1, TDP1, ERG24, ESC8 SWI4, TEC1 

ATO2, DIP2, PIR3 CST6, SWI4 

YBR225W, KCC4, DOT5, 

YJL068C, CYC2, YPK2, YIL108W 

TEC1, RLM1 

OM14, DIA3, YET3, PAM1, 

ATP17, GSY1, YGL052W, 

YHR097C, PRM10, SMD2, 

VPS38, YML131W, SIP5, CIK1, 

BOR1, BSC6, GDH1, NTO1 

ASH1, TEC1 

FMP30 ACE2, STE12 

FUS1, ECM4, YBR138C CIN5, CST6 

MFA1, SSU1, FDH2 TEC1, CST6 

TABLE II.    BEST COMBINATION OF TF PAIRS CORRESPONDING TO 

TARGET GENES FOR YEAST CELL CYCLE DATA THROUGH SPLINE 

REGRESSION MEASURE  

Target (DE) TF pair(s) 

GRX7, PRB1, CNB1 ACE2, FKH1 

FUS3, SPI1, STF2, MOD5 ACE2, SWI5 

UGA2, RTC3, SRP40, KTI12, 

YKL044W, AFR1, PRM10, COS9 

MCM1, SWI4 

LEU2 SWI5, ASH1 

RCR1, YNL146W, YJR154W CIN5, CST6 

FIG2, NMA1, GSF2, HCH1, AFI1 TEC1, CST6 

YPR142C, YBR144C, CCT4, GUD1, 
ECM18, GGA1, YGL117W, 

YGR149W, DSE2, ERG24, HXT10, 

PIR3, BUR2, PGM2, IMA2, FMP21, 
KCC4, YDR249C, YML131W, 

OM14, SDH4, YIL108W, YJL068C 

STE12, ASH1 

YBR144C, KCC4, FMP21, HXT10, 
GSY1, MST27, HXT4, AYR1, 

GUD1, YJR026W, YKL151C, CIK1, 

ERG24, ATO2, RPL25, YOR053W 

STE12, STB1 

PAM1, DIA4, SMD2, PAM16 STE12, RLM1 

STP4, YET3, GYP7, YJL052W, 

SLT2, HXT6, HXT9, MYO3, 

YLR253W, PSO2, YNL043C, 
YMR317W, FDH2 

TEC1, STB1 

IME4, APE1, DIP2, YOR121C, 

MKK1, VPS38, FSH1, CAP2, GIP3, 

MF(alpha)1 

ASH1, TEC1 

TDP1, YBR225W, FUS1, YCR007C, 
ATP17, BCY1, BAP2, POR2AGA2, 

YSC84, TFA2, MCM5, NIT3, SIP5, 

VTI1, BOR1, ESC8, NTO1 

ASH1, STP1 
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Validation of Yeast gene regulatory networks have 

been done by using a web based tool called 

YEASTRACT (www.yeastract.com) [13]. 

In Fig. 1 and Fig. 2 we have shown some TF pairs to 

target gene regulatory networks obtained using the 

ALGORITHM; here genes mentioned in text boxes 

having gray background represents TFs and genes 

mentioned in text boxes having white background 

represent target genes. 

For human colon cancer data validation is performed 

by two web based tools namely Tfacts (www.tfacts.org) 

and PRISM (www.PRISM.stanford.edu) [14]. The 

corresponding steps to use these tools are discussed 

below. 

TABLE III.    BEST COMBINATION OF TF PAIRS CORRESPONDING TO 

TARGET GENES FOR HUMAN COLON CANCER DATA THROUGH MUTUAL 

INFORMATION ADJACENCY MEASURE 

Target (DE) TF pair(s) 

CA1 CDX2, PAX2 

GCG CREB1,FOXA1,HOXC8, ST18 

AHCTF1,STAT1 

INHBA ATF1,CREB1,NFYA,MEF2B,HIVEP3 

CHGA ATF1,CREB1,EGR1,ETS2,JUN,HOXC
4, TFAP2A, STAT1 

SPP1 TP53, FOXJ3 DEPDC6,EST1,GLI1, 

JUN, HOXC8  

IL8 TP53, HSF2,LHX3,SOX21,IRF9, 

GATAD1, ZFR2,NFKB2,JUN,RELA, 

ZNF33B 

ADH1C TCF3,NFYA,ELF5,NFIC,TBP,DBP 

CHI3L1 SP4,MAX, PARP12  

ADH1B ATF4,DBP,FOXC1,MTA1,CEBPB 

MUC4 RCOR1,STAT5A,ZNF43,ZNF764,SM

AD4  

PDE9A LHX6,ZNF665,ATXN7,DSP,GLI1 

ANPEP HOXD1,NFYA,NR2F1,ANKZF1,ETS2 

UGT1A1,UGT1A2,  

UGT1A3,UGT1A4,  

UGT1A5,UGT1A6,  
UGT1A7,UGT1A8,  

UGT1A9  

TBX21,NEUROD1,H1F0,HNF1A,RAR

A,SP1, RESTKLF2, NEUROD1, IRF7, 

ZMAT4, RBM22,SLC22A4,PPARG 

UGT1A1,UGT1A2,  

UGT1A3,UGT1A4,  

UGT1A5,UGT1A6,  
UGT1A7,UGT1A8,  

UGT1A9,IL8 

IRF7,ZMAT4 

CLCA1 NR1H3,LHX6,RELA,GLI1 

SST ZNF287,FOXJ3,RNF113A,PAX6,CEB

PE, ATF1,ATF2,ATF4,CREM 

 

In TFactS we first need to give the target gene(s) 

names as input. The P value, Evalue, Q value and FDR 

(Benjamini-Hochberg) thresholds are set as 0.01. They 

are given to control the rate of false positives for multiple 

testing conditions [15]. Remaining parameters are left as 

it is (default value). After the computation is complete we 

check the result in next step by clicking the link 

“Submitted Lists and the corresponding TFs”. Here it 

gives us the corresponding TFs for the particular target 

genes. As mentioned in these steps we have given the DE 

gene (from Table III and Table IV) names as input (target) 

and noticed that most of the TFs discovered by our 

algorithm to be significant against that DE gene using 

TFactS. 

   

 

 

  

   

 

 

 

   

 

 

 

 

  

 

 

 

  

 

  

  

 

  

  

  

 

  

 

  

 

 

 

 

 
 

  

  

 
  

 

 

 
 

 

On the other hand the corresponding steps to use the 

PRISM tool are given below: 

At first we need to choose the species on which the 

computation is being conducted. Accordingly we have 

selected “Human NCBI build 36.1”. 

In the subsequent step we have to give either the target 

gene name or the Transcriptional regulator name. If we 

choose to give the target gene name as input then like 

TFactS it will give us TFs corresponding to that target 

gene, but if the inputs are TFs then it will give us target 

gene names (controlled by those TFs) as output. In 

addition to these results, PRISM also gives us the 

corresponding ontology, biological context, E value, P 
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TABLE IV.    BEST COMBINATION OF TF PAIRS CORRESPONDING TO 

TARGET GENES FOR HUMAN COLON CANCER DATA THROUGH SPLINE

REGRESSION MEASURE 

Target (DE) TF pair(s)

CA1 CRX, PAX2,PAX5, SP140 

SEMA4A

GCG PAX2,POU6F2,ZNF236,NKX6-1, 

ZNF638,ZC3H10,FOXA1,CREB1

INHBA ATF1,CREB1,DHX57

CHGA NR2E3,MYF6,ZNF236,NEUROD6, 

ZSCAN12,ZNF155,LASS6,ZNF638, 

CBX2,EGR1,TFAP2A,ATF1

SPP1 HOXA9,MYB,SMAD1,KLF10,ETV4, 
ZNF750,ZSCAN16,ID4,POU5F1,TP5, 

DLX5,CTNNB1,ETS1,GLI1,HOXC8,

IL8 TP53, NFE2L3,SMAD5,MSX2, 

ZNF444,STAT2,VENTX, 
BACH2,TCF20,MET, 

RORA,CDX1,TEAD4,ZNF257, TOX3, 

MET

ADH1C CEBPB,NFYA,ELF5,SMARCA1,TBP,D

BP

CHI3L1 ELF4,BACH2,SPI1,MLLT3,YEATS2, 

GTF3A,JRKL,USF1

SLC26A2 TFAP2C,CTNNB1,RBPJL,SP1,EMX1,

ZNF257,NEUROG2,PLEKHA4,

ADH1B CEBPA,CEBPB,BACH2,HHEX,

HOXB2,ZNF155,WNT8B 

MUC4 ZNF236,ST18,HOXC10,ZNF750, 

SMAD7, TFAP2B

PDE9A ELF4,GLI1,TFAP2A,FOXJ3,BMP2

CEACM7 EZH2,PLAGL2,SRY,RERE,HMGB3, 

MBNL2,GLI2,NFAT5,HOXB6, 

BCL11B,PBX1,ZNF177

ANPEP ELF4,PHOX2B,IRF8,ESRRA,HLF, 

TSC22D2,CUL3,EST1,EST2

UGT1A1,UGT1A2, 

UGT1A3,UGT1A4, 

UGT1A5,UGT1A6, 
UGT1A7,UGT1A8, 

UGT1A9

RARA,CDX1,GATA6,HOXD12, 

CHD7,HNF1A,PPARG,HHEX, NPAS2, 

MNX1,ZBTB3,TOX3,RAPGEF

CLCA1 HOXA9,ATF2,HOXC13,GLI1,BMP2, 
ZC3H7B, 

SST GATA1,DLX2,NR4A3,SRY, 

NEUROD4,C11orf9,PLEKHA4, 

CREB1,CEBPA,CEBPG

HSD17B2 RBPJL,PGR,HOXC6,EN1,FBN1, 
CTNNB1,



value, fold enrichment, genes hit and binding sites as 

output. 

Similar to TFactS, in PRISM also we have given D.E 

gene names as input in search of TFs. Here also we have 

noticed that most of the TFs discovered by our algorithm 

are present as output for that DE gene entry. However in 

few cases TFs discovered (against some DE genes) by 

our algorithm are not present directly as output, but are 

present as similar proteins corresponding to the  

Transcriptional Regulators found for that target (D.E) 

gene by PRISM.  

In Table V we have given some examples of TFs 

corresponding to DE genes found by PRISM which tally 

our result produced by MI method. Apart from the 

matching we have also given the E value, P value and 

fold enrichment. 

In Table VI we have enlisted similar results but this 

time tallying with the spline regression method. 

TABLE V.    VALIDATING MUTUAL INFORMATION BASED TFS CORRESPONDING TO TARGET GENES USING PRISM WITH CERTAIN SIGNIFICANT 

SCORES 

Target TF E-value P-value Fold enrichment 

MUC4 STAT5A 

(Similar Protein to STAT1) 

0.000 1.07E-16 2.16 

IL8 JUN  0.116 2.71E-11 2.12 

SPP1 JUN 

(Similar Protein to JPD2) 

0.000 1.25E-42 2.02 

GCG STAT1 0.116 1.43E-22 2.57 

SST PAX6 0.349 6.21E-09 2.12 

TABLE VI.    VALIDATING SPLINE REGRESSION BASED TFS CORRESPONDING TO TARGET GENES USING PRISM WITH CERTAIN SIGNIFICANT SCORES 

Target TF E-value P-value Fold enrichment 

MUC4 TFAP2B 0.697 7.16E-06 2.62 

CA1 CRX, PAX2, and PAX5 (both similar protein to CRX) 0.697 2.78E-13 3.25 

IL8 BACH2 0.116 4.29E-25 2.06 

SST DLX2 
(Similar Protein to BARHL2) 

0.349 5.99E-08 2.14 

 

IV. CONCLUSION AND FUTURE WORK 

In this work we have extended a recently proposed 

procedure [4] to find the regulation between the 

Transcription Factors (TF) and differentially expressed 

(D.E) genes. D.E genes are those genes that have 

different expression values across varied conditions. 

 
a 

 
b 

 
c 

 
d 

 
e 

Figure 1.  Some significant TF pair-target gene regulatory networks 
using Mutual Information Adjacency Measure. 

 
a 

Lecture Notes on Information Theory Vol. 2, No. 3, September 2014

270©2014 Engineering and Technology Publishing



 
b 

 
c 

 
d 

 
e 

Figure 2.  Some significant TF pair-target gene regulatory networks 
using Spline Regression Measure 

Assuming in a Gene Regulatory Network it is the 

Transcription Factor protein which can affect the cell 

division procedure we can say that TFs must be 

regulating the target (DE) genes across both the 

conditions. The thought behind this work extends our 

previously introduced correlative procedure to find the 

best possible combination of TFs which can regulate a 

target gene highlighting only the linear regulation of 

target gene by TFs. Recent microarray studies yield 

datasets having large number of expression values, where 

the nonlinear regulatory nature may be more prominent 

than the linear one. To enforce this conception we have 

investigated the nonlinear regulation of targets by T.F 

genes through mutual information and spline regression 

based measures and tested it using yeast cell cycle as well 

as by human colon cancer dataset as the dimension 

(number of samples) of human colon cancer data is high 

allowing us to correctly reflect the effect of nonlinear 

regulations on large dataset [16]. We have taken a pair of 

TFs to minimize false negatives [17]. Here, as mentioned 

in the ALGORITHM we are considering the co-

regulating effect of the TFs to the targets across both 

conditions to predict the TF pairs. 

We have also gone through a comparison between the 

current nonlinear association based procedures with the 

previous linear association based procedure. Now while 

comparing the current method with the previous one we 

have used the result obtained for yeast cell cycle data 

because the previous work was carried out on this data 

only. Here, we have found that the numbers of possible 

combinations of TFs are high in linear method compared 

to the nonlinear counterpart. This is may be due to the 

small dimension of the data where as stated previously 

linear measure works better than the nonlinear 

counterparts [16]. We have also found that a good 

number of TF pair combinations found by the linear 

approach is present in either of the nonlinear based 

methods applied out here. Again the number of common 

TF pairs which have higher number of differentially 

regulated genes through nonlinear methods compared to 

our earlier linear approach are found to be more 

significant than the corresponding outcomes having more 

D.E genes in our previous linear correlative method 

compared to the nonlinear counterpart. 

As mentioned in the Results and Discussion validation 

of these TF pairs corresponding to a target (D.E) gene 

have given transcriptional regulatory networks through 

which we can understand rolls of the TFs to control the 

target genes. Gene regulatory networks formed by the 

spline regression method are more prominent than mutual 

information based method. 

In our work to date we have incorporated linear and 

nonlinear interactive cases to unveil the relationship 

between proteins and corresponding target genes. We can 

further extend our work in a protein-protein interaction 

network by applying these techniques to check out the 

interactions between bait and prey proteins to investigate 

which functional transcriptional factors are formed by 

them. This is useful especially when the hub protein is 

date hub [18] (Here interaction partners are expressed at 

different times. So we can assume that it will create many 

pair wise interactions; each time with a different partner).  

Further extension can be performed by broadening the 

concept given in [19]. Interaction (association) value 

between proteins will not only give the influence of one 

towards another but it can also suggest whether proteins 

are localized or not. For annotation of new proteins, 

particularly for indirect interactions this procedure will 

cite a new direction in the domain of protein-protein 

interaction networks. 
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