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Abstract—Recently, a very pragmatic approach towards 

achieving the Semantic Web has gained some traction with 

Linked Data. While many standards, methods, and 

technologies are applicable for Linked Data, there are still a 

number of open problems in the area of Linked Data. In this 

paper, we investigate how Linked Data are stored, indexed, 

and queried. We present an MDH* structure capable of 

efficiently storing, indexing, and querying Linked Data. The 

goal of the MDH* is to support efficient join query 

processing with a compact storage layout. We evaluate the 

MDH* with existing methods on a synthetic RDF dataset. 

The experimental results show that our method performs 

better in terms of both the join response time and the 

amount of storage compared to existing methods.  

 

Index Terms—

histograms, occurrences, join queries, index structures 

 

I. INTRODUCTION 

Linked Data refers to a set of best practices for 

publishing and interlinking structured data on the Web 

[1]. These practices were introduced by Tim Berners-Lee 

in his Web architecture note Linked Data. The basic idea 

of Linked Data is to apply the general architecture of the 

Web to the task of sharing structured data on global scale. 

Technically, Linked Data is employing URIs (Uniform 

Resource Identifications), RDF (Resource Description 

Framework), and HTTP (Hypertext Transfer Protocol) to 

publish structured data and to connect related data that is 

distributed across multiple data resources.  

All data items in RDF are represented in triples of the 

form (subject, predicate, object). Since RDF triples are 

modeled as graphs, we cannot directly adopt existing 

solutions from relational databases and XML 

technologies [2]. Thus, we need to discuss how Linked 

Data should be stored, indexed, and queried. There are 

two approaches. First, we can maintain independent data 

copies in a local storage, benefiting from convenient 

conditions for efficient query processing, which we call 

“local approach,” The second approach is based on 

accessing distributed data on-the-fly using link traversal, 

which we call “distributed approach.” 

Local approaches [3]-[8] are copying data into a 

centralized registry in a manner similar to search engines 

for the Web of documents. By using such a registry, it is 
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possible to provide excellent query response times. 

However, there are a number of drawbacks. First, query 

results may not reflect the most recent data. Second, 

storing all data may be expensive and the performance 

penalty can be high as the volume of dataset increases. 

There is a large amount of unnecessary data gathering, 

processing, and storing. Third, users can only use the 

portion of the Web of data that has been copied into the 

registry.  

Distributed approaches [9]-[12] are not much different 

from work on relational federation systems. Such 

approaches offer several advantages: There is no need to 

synchronize copied data. Queries are more dynamic with 

up-to-date data. New resources can be added easily 

without a time lag for indexing and integrating the data, 

and these systems require less storage. However, the 

potential drawback is that we cannot assume that all 

publishers provide reliable SPARQL endpoints for their 

Linked Data. Table I summarizes the local and distributed 

approaches.  

TABLE I.  TRADITIONAL APPROACHES FOR LINKED DATA QUERIES 

Type Description Related Work 

Local 

Approach 

Storing local copies of 

RDF triples 

Quad[3], RDF-3X[4], 
Hexastore[5], Matrix[6], 

Path[7], PIG[8] 

Distributed 

Approach 

Online accessing of 

distributed data sources 

DARQ[9], SemWIQ[10], 

Federator[11], Live 
Exploration[12] 

 

In this paper, we investigate a compromise method 

between the local approach and distributed approach. The 

local approach obviously offers better performance, but 

the queried data might not be up-to-date because Linked 

Data change a lot. The maintenance of local auxiliary 

index structures may solve this problem instead of storing 

data triples entirely locally. Using indexes we can retrieve 

distributed data resources participating on a query result, 

rapidly reducing the amount of data that are really needed 

to be accessed on-demand.  

The rest of this paper is organized as follows. Section 2 

describes related work. Section 3 introduces Linked Data. 

Section 4 presents the extended multidimensional 

histograms. Section 5 describes the experimental 

evaluation. Section 6 contains conclusions and future 

work. 

II. RELATED WORK 
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Although existing researches [3], [7], [8], [10] already 

focus on the query processing over RDF data, these 

methods do not target on Linked Data queries. Linked 

Data index methods ignore the existence of data links 

during the query execution process itself [12]. Instead, 

these methods rely on a pre-populated index which is 

used for identifying URIs to look up during query 

execution time. Hence, in contrast to index structures that 

store the data itself (e.g., Quad, RDF-3X, Hexastore, etc.), 

the index method discussed here uses the data structure 

that indexes URIs as pointers to data. 

Resource selection using such an index is based on 

relevance: A URI is relevant for a given query if the data 

retrieved by looking up the URI contribute to the query 

result [13]. Given that data from irrelevant URIs is not 

required to compute a query result, avoiding the lookup 

of such URIs reduces the cost of query execution 

significantly. Consequently, the focus of research in this 

context is to identify a subset of all (indexed) URIs that 

contains all relevant URIs and as few irrelevant ones as 

possible.  

Linked Data index structures are closer in spirit to 

traditional database query processing techniques. Existing 

data summaries and approximation techniques may be 

adapted to develop an index structure for Linked Data 

queries. Umbrich et al. [14] adopt the concept of 

multidimensional histograms (MDH) as a data summary 

for index-based Linked Data query processing.  

The first step in building the summary index is to 

transform RDF triples provided by resources into points 

in a 3-dimensional space. This method applies hash 

functions to the individual components of RDF triples so 

that it obtains a triple of numerical numbers for each RDF 

triple (e.g., (Smith, livesIn, Paris) → (242, 78, 127)). In 

the next step, the space is partitioned into disjoint regions, 

each defining a so-called bucket. Each bucket contains 

entries for all URIs whose data include RDF triples in the 

corresponding region.  

Given a triple pattern for RDF query, a lookup entails 

computing the corresponding numerical triple by 

applying the same hash function and retrieving buckets 

responsible for the obtained numerical triple. For exam-

ple, a triple pattern is transformed into the line (or plane) 

in the space; (Smith, livesIn, ?x) → (242, 78, ?). Any 

URI relevant for the triple pattern may only be contained 

in buckets whose regions are touched by the line (or 

plane). Fig. 1 shows an example of this technique. 

 

Figure 1.  Example of multidimensional histograms. 

Similarly, the QTree [15] that Harth et al. use as a 

summary of Linked Data is a combination of the MDH 

and R-trees (the latter was originally proposed to index 

spatial data). Therefore, it inherits benefits from both data 

structures. In contrast to the MDH, where regions are 

fixed-size, the QTree is a tree-based data structure where 

variable-size regions cover the content of resources more 

accurately. While the MDH is an inexpensive method to 

build and maintain but may provide a too coarse-grained 

index, the QTree is a more accurate method but requires 

high cost for the index construction and maintenance. Fig. 

2 shows an example of the 2-dimensional QTree. 

Root

R2

R1

Root

R1 R2

R1.1 R1.2 R2.1 R2.2

 

Figure 2.  Example of 2-dimensional QTree. 

A significant issue in Linked Data index structures is 

that, due to the large number of resources and the 

potentially large number of required joins to answer 

queries, care must be taken to devise an efficient physical 

layout. Typically, Linked Data index structures only need 

to consider the found relevant resources. Hence, there is 

no guarantee that the resources actually provide the RDF 

triple that we were originally looking for (i.e., false 

positives). The reason is that a bucket does not represent 

exact coordinates in the data space but a region which 

also covers coordinates for RDF triples not provided by 

any indexed resource [14]. 

Linked Data index structures generally take as input a 

triple pattern and return a list of data resources that 

potentially contribute the result, so a large number of 

resources can contribute to each of the triple patterns. 

Since accessing too many resources over the Web is 

potentially very costly, we need investigating a novel 

index structure that would be able to efficiently process 

queries over distributed Linked Data. 

III. LINKED DATA 

RDF is the data model for Linked Data, and SPARQL 

is the standard query language for this data model. 

Spurred by efforts like LOD (Linked Open Data) project 

[16], a large amount of semantic data are available in the 

RDF formant in many fields such as science, business, 

bioinformatics, social networks, etc. These large volumes 

of RDF data motivate the need for scalable native RDF 

data management solutions capable of efficiently storing, 

indexing, and querying RDF data. 

Definition 1 : Given a set of all URIs U, a set of blank 

nodes B, and a set of literals L, an RDF triple is a tuple: 

(s, p, o)  (U∪B)  U  (U∪B∪L)  

where s denotes the subject, p the predicate, and o the 

object. 

SPARQL is essentially a graph-matching query 

language. The basic building block from which more 

complex SAPRQL query patterns are constructed is a 

basic graph pattern.  
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Definition  2: A basic graph pattern is a set of triple 

patterns, where a triple pattern is an RDF triple that may 

contain query variables (prefixed with ‘?’) at the subject, 

predicate, and object position. 

Example 1 : The following SPARQL query asks for 

participated projects of user123’ friends, where it consists 

of two triple patterns joined by variable ?k:  

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 

PREFIX user: <http://example.com/users/> 

SELECT ?p WHERE { 

user:user123 foaf:knows ?k . 

?k foaf:project ?p         .  } 

IV. EXTENDED MULTIDIMENSIONAL HISTOGRMS 

A. Index Structure 

We adapt MDH techniques for Linked Data storage 

and indexing. The goal of our index structure called 

MDH* is to support efficient join query processing 

without significant storage demand. In order to scale the 

query processor, we should design a compact storage 

structure and minimize the number of indexes used in the 

query evaluation. As a running example for this paper, a 

small fragment of an RDF dataset is given in Fig. 3. 

(user123  knows          user635) 

(user123  knows          user724) 
(user123  knows          user837) 

(user234  knows          user956) 

(user234  knows          user103) 

(user345  knows          user635) 

(user345  knows          user724) 

(user345  knows          user103) 
(user635  project          work141) 

(user635  project          work156) 

(user837  project          work113) 
(user837  project          work141) 

(user837  project          work156) 

(user956  project          work113) 
(user956  project          work129) 

(user103  project          work141) 

(user103  project          work138) 

Figure 3.  A small fragment of an RDF dataset. 

Indeed, rather than storing each URI or literal value 

directly as a string, query processors usually associate a 

unique numerical number to each resource and store this 

number instead. For example, since user123 would be 

represented by a URI like http://example.com/users/ 

user123 in a real-world RDF graph, storing the numbers 

results in large space saving. Thus, the first step of 

building the MDH* is to transform the RDF triples into 

the numerical space. We apply a hash function to the 

RDF triples for numerical numbers. In this case, these 

numbers are points in the n-dimensional data space 

whose coordinates correspond to 3-dimensional cubes for 

(s, p, o).  

The coordinates are inserted one after another and 

aggregated into regions. Each region maintains a list of 

resources. Each resource in the triple table is extended 

with two additional occurrences in order to speed up join 

queries rather than single RDF triple. The occurrences 

specify s# and o#, where s# indicates the number of 

subjects in which o occurs as subjects in the RDF dataset 

and similarly o# indicates the number of objects in which 

s occurs as objects.  

We observe that a fair amount of triples in many real 

RDF datasets are used as subject of a triple and object of 

another triple. For example, Yuan et al. [17] showed that 

more than 57% subjects are also objects. In this paper, we 

show that the join query performs better if we maintain a 

set of pairs (coordinates, occurrences). 

Definition 3 : A pair (t, v) is an RDF tuple with count 

values v, where t is a triple of points (x, y, z) and v is 

occurrences s# and o#. Note that the RDF tuple ((x, y, z), 

(s#, o#)) is equivalent to the 5-column tuple (x, y, z, s#, 

o#) 

Using our running example, we assume that converted 

hash values would be represented as Table II. Then, 

consider the triple (user123, knows, user635), which 

resolves to the key (11, 12, 13) to insert into our index. 

The occurrences are initialized (0, 0) if o was not present 

in s and s not present in o respectively before, otherwise 

the values are incremented by one. Fig. 4 illustrates how 

the MDH* looks like after adding occurrences.  

TABLE II.  HASH VALUES FOR EXAMPLE DATASET 

subject predicate object 

user123=11   user234=31 

user345=1     user635=13 
user837=4     user956=33  

user103=23 

knows=12 
project=32 

user635=13    user724=3 
user837=4      user956=33 

user103=23    work113=6 

work129=26   work138=36 

work141=17   work156=38 

 
(11, 12, 13, 2, 0) (11, 12, 3, 0, 0) (11, 12, 4, 3, 0) (31, 12, 33, 2, 0) (31, 
12, 23, 2, 0) (1, 12, 13, 2, 0) (1, 12, 3, 0, 0) (1, 12, 23, 2, 0) (13, 32, 17, 

0, 2) (13, 32, 38, 0, 2) (4, 32, 6, 0, 1) (4, 32, 17, 0, 1) (4, 32, 38, 0, 1) 

(33, 32, 6, 0, 1) (33, 32, 26, 0, 1) (23, 32, 36, 0, 2) (23, 32, 17, 0, 2) 

Figure 4.  RDF tuples with occurrences. 

We decided to use the equi-width histograms for the 

MDH*, because they can be built efficiently even if the 

exact distribution is not known in advance. In the 

histograms, each partition defines the boundaries of a 

region in the dimension. Fig. 5 shows our example data in 

a multidimensional equi-width histogram. 

10 20 30

10

40

20

40

30

0
0 Subject

Predicate

Object

 

Figure 5.  Coordinates corresponding to hash values. 

Since counting and storing the occurrences may be 

costly, adding the counts can be performed as a batch 

operation once the MDH has been constructed. When a 

query is given, the first step is to determine relevant 

numerical triples that answer the query. By looking up 

these triples in the MDH*, we obtain a set of resources 
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potentially providing relevant data. In the next section, 

we show how we can execute join queries efficiently over 

the MDH*. 

B. Query Processing 

There are two types SPARQL queries: single triple 

pattern query and join triple pattern query. Processing 

queries with single triple pattern is straightforward. When 

a query consists of multiple triple patterns that share at 

least one variable, we call the join triple pattern query. In 

SPARQL queries, there are eight triple patterns [3]. 

Among them (?s, ?p, ?o) is required a full scan, and the 

number of triples matching (s, p, o) is 0 or 1. Hence, we 

need to estimate the selectivity of six triple patterns: (s, 

p, ?o), (?s, p, o), (s, ?p, o), (s, ?p, ?o), (?s, ?p, o), (?s, 

p, ?o).  

Due to the page length limit, we describe here the steps 

for evaluating (s, p, ?o). We process this pattern in three 

steps: (1) Using the MDH*, we locate all regions that 

possibly provide the result. (2) We need to find the set of 

relevant resources in the regions. (3) Now we examine 

each relevant resource to find objects matching the given 

values of s and p. First of all, (s, p, ?o) is converted into a 

set of coordinates in the data space by applying the same 

hash function that we used for the index creation. 

However, in contrast to building hash values for RDF 

triples, triple patterns for queries might contain variables. 

Because of these variables, we have to work with regions 

instead of points. Using a query line discussed in Section 

2, we can determine all regions contained in the MDH* 

that overlap with the line. After having identified all 

relevant regions, we can determine the set of relevant 

resources.  

Since the join query is expressed by conjunction of 

multiple triple patterns, a prerequisite is to identify 

relevant resources that possibly provide the result for a 

basic triple pattern. With the help of our MDH*, we can 

choose the data regions that contain all possible triples 

matching the patterns. Then, we can find sets of relevant 

resources. A join algorithm can be implemented by using 

many various techniques (e. g., merge join, hash join, 

nested-loop join, etc.) known from relational databases. A 

straightforward implementation of a region join is the 

nested-loop join. Algorithm 1 provides a detail 

illustration of our occurrence-based join algorithm. The 

input for the algorithm is a set of pairs of relevant 

resources. Two input sets (i. e., L and R) are compared in 

the inner loop using equi-join techniques for determining 

the matching between sets. 

Algorithm 1: Occurrence-based Join Algorithm 

Result = ∅ 

For each  tuple l in L 

For each  tuple r in R 

         If  s# ≠ 0 

             If  l and r satisfy the join condition  Then 

                          l and r tuples are added to Result 

                          s# is decremented by one 

             Else 

         Else  break 

Endfor 

Endfor 

Considering Example 1 of (s, p, ?o)  (?s, p, ?o) 

pattern, if s# is not 0, then perform the join operation. 

This operation checks whether the two tuples satisfy the 

join condition. If the join condition is satisfied, then the 

values of these two tuples are added to the result and s# is 

decremented by one. This process repeats until s# 

becomes 0. Thus our algorithm can quickly prune 

unnecessary scanning that is guaranteed not to match the 

query. Similar process applies to o# if (?s, p, o)  (?s, 

p, ?o) pattern is given. 

V. EXPERIMENTAL EVALUATION 

In our experiments we compared our method with 

some existing methods. Our objective is to show that we 

can achieve excellent join query performance with small 

amount of storage. Example 1 shows a SPARQL query 

that expresses a join between two triple patterns like (s, 

p, ?o) and (?s, p, ?o). Fig. 6 depicts a join tree for the 

example and Fig. 7 illustrates two input sets for the join 

algorithm on Example 1. We shaded the input sets in this 

figure. 

 
 

user123 knows ?k       ?k project ?p 

Figure 6.  Join tree for Example 1. 

(11, 12, 13, 2, 0) (11, 12, 3, 0, 0) (11, 12, 4, 3, 0) (31, 12, 33, 2, 0) (31, 

12, 23, 2, 0) (1, 12, 13, 2, 0) (1, 12, 3, 0, 0) (1, 12, 23, 2, 0) (13, 32, 17, 

0, 2) (13, 32, 38, 0, 2) (4, 32, 6, 0, 1) (4, 32, 17, 0, 1) (4, 32, 38, 0, 1) 
(33, 32, 6, 0, 1) (33, 32, 26, 0, 1) (23, 32, 36, 0, 2) (23, 32, 17, 0, 2) 

Figure 7.  Two input sets for the join. 

Example 2: After the SPARQL query is translated and 

submitted to the query processor, existing methods 

usually perform a nested-loop join on the column of o 

accordingly. Roughly estimated, the join will cost 49= 

36 times of tuple comparison. Once the query and data 

are much more complex, the cost will increase 

dramatically. Our method is motivated to decrease the 

join cost by considering the fact that if s# is 0, then it is 

not necessary to compare the tuples. Thus, two tuples of 

(11, 12, 13, 2, 0) and (11, 12, 4, 3, 0) are selected as 

candidates for the join. We only perform the join 

operations within s# count. The join cost is reduced to 

2+0+5=7 times of tuple comparison. 

Our experiments compared our MDH* method (we 

refer to MDH) with Quad [3] and Live Exploration [12] 

(we refer to Live). Quad is one of the local approaches, 

while Live is one of the distributed approaches. In this 

work we ran two sets of experiments: in the first we 

measured the join response time, and in the second we 

measured the amount of storage. In order to evaluate the 

experiments, we used a synthetic dataset that contained 

100,000 RDF triples in the data space. The reason for 

using a synthetic dataset is that we can control parameters 

such as the density and the number of triples. The triple is 

generated by randomly generating its point with a 

uniform distribution.  

The first set of experiments concerns the join response 

time. In Fig. 8, the join response time is presented for the 

MDH, Quad, and Live. We can see that both MDH and 
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Quad can achieve satisfying results, as they perform join 

queries based on the index structures. MDH performance 

is a little worse than Quad. The reason is that MDH 

considers only an auxiliary index without storing RDF 

triples entirely. Live performance is the worst, because it 

relies on a large number of unreliable resources.  

 

Figure 8.  Join response time. 

The result of the second set is illustrated in Fig. 9. This 

figure shows the amount of storage for MDH, Quad, and 

Live. From the figure, we can observe that Live and 

MDH require less storage. The reason is that both try to 

save space without copying all data. Overall, MDH is a 

slightly worse than Live, because MDH has an index with 

occurrences. But there is not much difference between 

them. Quad is significantly higher than the other two, 

because it only considers the copying data into a 

centralized registry.  

Although MDH is not the best performance, as the 

experiment results indicate, it performs well overall. The 

main advantage of MDH is not necessary the time-

consuming index construction. Therefore, it seems 

reasonable that MDH is more useful than Quad and Live.  

 

Figure 9.  Amount of storage. 

VI. CONCLUSIONS 

In this paper, we propose the extended 

multidimensional histograms called MDH* to store, 

index, and query Linked Data. We also present an 

occurrence-based join algorithm to increase the efficiency 

of the MDH*. The extended feature with two additional 

occurrences is taken into consideration which might help 

reduce the join costs. We evaluate the MDH* with 

existing methods. The experimental results demonstrate 

that our algorithm based on the MDH* is both query 

efficient and space efficient with a fast and compact 

index structure. 

As components of future work, the simple equi-width 

histograms can be extended to more accurate structures 

using database indexing technologies. Well-known 

indexing techniques from the literature (e. g., Quad Trees, 

k-d Trees, R* Trees, and Graph Trees) can be used for 

building Linked Big Data efficiently. While various 

optimization techniques of databases have been 

extensively studied in the research community, Linked 

Data techniques, to the best of our knowledge, are less 

explored. Our work will focus on developing an optimal 

plan that can apply to our system. 
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