
MDH*: Multidimensional Histograms for Linked

Data Queries

Yongju Lee
School of Computer Information, Kyungpook National University, Sangju, Korea

Email: yongju@knu.ac.kr

Abstract—Recently, a very pragmatic approach towards

achieving the Semantic Web has gained some traction with

Linked Data. While many standards, methods, and

technologies are applicable for Linked Data, there are still a

number of open problems in the area of Linked Data. In this

paper, we investigate how Linked Data are stored, indexed,

and queried. We present an MDH* structure capable of

efficiently storing, indexing, and querying Linked Data. The

goal of the MDH* is to support efficient join query

processing with a compact storage layout. We evaluate the

MDH* with existing methods on a synthetic RDF dataset.

The experimental results show that our method performs

better in terms of both the join response time and the

amount of storage compared to existing methods.

Index Terms—

histograms, occurrences, join queries, index structures

I. INTRODUCTION

Linked Data refers to a set of best practices for

publishing and interlinking structured data on the Web

[1]. These practices were introduced by Tim Berners-Lee

in his Web architecture note Linked Data. The basic idea

of Linked Data is to apply the general architecture of the

Web to the task of sharing structured data on global scale.

Technically, Linked Data is employing URIs (Uniform

Resource Identifications), RDF (Resource Description

Framework), and HTTP (Hypertext Transfer Protocol) to

publish structured data and to connect related data that is

distributed across multiple data resources.

All data items in RDF are represented in triples of the

form (subject, predicate, object). Since RDF triples are

modeled as graphs, we cannot directly adopt existing

solutions from relational databases and XML

technologies [2]. Thus, we need to discuss how Linked

Data should be stored, indexed, and queried. There are

two approaches. First, we can maintain independent data

copies in a local storage, benefiting from convenient

conditions for efficient query processing, which we call

“local approach,” The second approach is based on

accessing distributed data on-the-fly using link traversal,

which we call “distributed approach.”

Local approaches [3]-[8] are copying data into a

centralized registry in a manner similar to search engines

for the Web of documents. By using such a registry, it is

 Manuscript received July 23, 2014; revised September 15, 2014.

possible to provide excellent query response times.

However, there are a number of drawbacks. First, query

results may not reflect the most recent data. Second,

storing all data may be expensive and the performance

penalty can be high as the volume of dataset increases.

There is a large amount of unnecessary data gathering,

processing, and storing. Third, users can only use the

portion of the Web of data that has been copied into the

registry.

Distributed approaches [9]-[12] are not much different

from work on relational federation systems. Such

approaches offer several advantages: There is no need to

synchronize copied data. Queries are more dynamic with

up-to-date data. New resources can be added easily

without a time lag for indexing and integrating the data,

and these systems require less storage. However, the

potential drawback is that we cannot assume that all

publishers provide reliable SPARQL endpoints for their

Linked Data. Table I summarizes the local and distributed

approaches.

TABLE I. TRADITIONAL APPROACHES FOR LINKED DATA QUERIES

Type Description Related Work

Local

Approach

Storing local copies of

RDF triples

Quad[3], RDF-3X[4],
Hexastore[5], Matrix[6],

Path[7], PIG[8]

Distributed

Approach

Online accessing of

distributed data sources

DARQ[9], SemWIQ[10],

Federator[11], Live
Exploration[12]

In this paper, we investigate a compromise method

between the local approach and distributed approach. The

local approach obviously offers better performance, but

the queried data might not be up-to-date because Linked

Data change a lot. The maintenance of local auxiliary

index structures may solve this problem instead of storing

data triples entirely locally. Using indexes we can retrieve

distributed data resources participating on a query result,

rapidly reducing the amount of data that are really needed

to be accessed on-demand.

The rest of this paper is organized as follows. Section 2

describes related work. Section 3 introduces Linked Data.

Section 4 presents the extended multidimensional

histograms. Section 5 describes the experimental

evaluation. Section 6 contains conclusions and future

work.

II. RELATED WORK

Lecture Notes on Information Theory Vol. 2, No. 3, September 2014

243©2014 Engineering and Technology Publishing
doi: 10.12720/lnit.2.3.243-248

linked data, RDF triples, multidimensional

Although existing researches [3], [7], [8], [10] already

focus on the query processing over RDF data, these

methods do not target on Linked Data queries. Linked

Data index methods ignore the existence of data links

during the query execution process itself [12]. Instead,

these methods rely on a pre-populated index which is

used for identifying URIs to look up during query

execution time. Hence, in contrast to index structures that

store the data itself (e.g., Quad, RDF-3X, Hexastore, etc.),

the index method discussed here uses the data structure

that indexes URIs as pointers to data.

Resource selection using such an index is based on

relevance: A URI is relevant for a given query if the data

retrieved by looking up the URI contribute to the query

result [13]. Given that data from irrelevant URIs is not

required to compute a query result, avoiding the lookup

of such URIs reduces the cost of query execution

significantly. Consequently, the focus of research in this

context is to identify a subset of all (indexed) URIs that

contains all relevant URIs and as few irrelevant ones as

possible.

Linked Data index structures are closer in spirit to

traditional database query processing techniques. Existing

data summaries and approximation techniques may be

adapted to develop an index structure for Linked Data

queries. Umbrich et al. [14] adopt the concept of

multidimensional histograms (MDH) as a data summary

for index-based Linked Data query processing.

The first step in building the summary index is to

transform RDF triples provided by resources into points

in a 3-dimensional space. This method applies hash

functions to the individual components of RDF triples so

that it obtains a triple of numerical numbers for each RDF

triple (e.g., (Smith, livesIn, Paris) → (242, 78, 127)). In

the next step, the space is partitioned into disjoint regions,

each defining a so-called bucket. Each bucket contains

entries for all URIs whose data include RDF triples in the

corresponding region.

Given a triple pattern for RDF query, a lookup entails

computing the corresponding numerical triple by

applying the same hash function and retrieving buckets

responsible for the obtained numerical triple. For exam-

ple, a triple pattern is transformed into the line (or plane)

in the space; (Smith, livesIn, ?x) → (242, 78, ?). Any

URI relevant for the triple pattern may only be contained

in buckets whose regions are touched by the line (or

plane). Fig. 1 shows an example of this technique.

Figure 1. Example of multidimensional histograms.

Similarly, the QTree [15] that Harth et al. use as a

summary of Linked Data is a combination of the MDH

and R-trees (the latter was originally proposed to index

spatial data). Therefore, it inherits benefits from both data

structures. In contrast to the MDH, where regions are

fixed-size, the QTree is a tree-based data structure where

variable-size regions cover the content of resources more

accurately. While the MDH is an inexpensive method to

build and maintain but may provide a too coarse-grained

index, the QTree is a more accurate method but requires

high cost for the index construction and maintenance. Fig.

2 shows an example of the 2-dimensional QTree.

Root

R2

R1

Root

R1 R2

R1.1 R1.2 R2.1 R2.2

Figure 2. Example of 2-dimensional QTree.

A significant issue in Linked Data index structures is

that, due to the large number of resources and the

potentially large number of required joins to answer

queries, care must be taken to devise an efficient physical

layout. Typically, Linked Data index structures only need

to consider the found relevant resources. Hence, there is

no guarantee that the resources actually provide the RDF

triple that we were originally looking for (i.e., false

positives). The reason is that a bucket does not represent

exact coordinates in the data space but a region which

also covers coordinates for RDF triples not provided by

any indexed resource [14].

Linked Data index structures generally take as input a

triple pattern and return a list of data resources that

potentially contribute the result, so a large number of

resources can contribute to each of the triple patterns.

Since accessing too many resources over the Web is

potentially very costly, we need investigating a novel

index structure that would be able to efficiently process

queries over distributed Linked Data.

III. LINKED DATA

RDF is the data model for Linked Data, and SPARQL

is the standard query language for this data model.

Spurred by efforts like LOD (Linked Open Data) project

[16], a large amount of semantic data are available in the

RDF formant in many fields such as science, business,

bioinformatics, social networks, etc. These large volumes

of RDF data motivate the need for scalable native RDF

data management solutions capable of efficiently storing,

indexing, and querying RDF data.

Definition 1 : Given a set of all URIs U, a set of blank

nodes B, and a set of literals L, an RDF triple is a tuple:

(s, p, o) (U∪B) U (U∪B∪L)

where s denotes the subject, p the predicate, and o the

object.

SPARQL is essentially a graph-matching query

language. The basic building block from which more

complex SAPRQL query patterns are constructed is a

basic graph pattern.

Lecture Notes on Information Theory Vol. 2, No. 3, September 2014

244©2014 Engineering and Technology Publishing

Definition 2: A basic graph pattern is a set of triple

patterns, where a triple pattern is an RDF triple that may

contain query variables (prefixed with ‘?’) at the subject,

predicate, and object position.

Example 1 : The following SPARQL query asks for

participated projects of user123’ friends, where it consists

of two triple patterns joined by variable ?k:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX user: <http://example.com/users/>

SELECT ?p WHERE {

user:user123 foaf:knows ?k .

?k foaf:project ?p . }

IV. EXTENDED MULTIDIMENSIONAL HISTOGRMS

A. Index Structure

We adapt MDH techniques for Linked Data storage

and indexing. The goal of our index structure called

MDH* is to support efficient join query processing

without significant storage demand. In order to scale the

query processor, we should design a compact storage

structure and minimize the number of indexes used in the

query evaluation. As a running example for this paper, a

small fragment of an RDF dataset is given in Fig. 3.

(user123 knows user635)

(user123 knows user724)
(user123 knows user837)

(user234 knows user956)

(user234 knows user103)

(user345 knows user635)

(user345 knows user724)

(user345 knows user103)
(user635 project work141)

(user635 project work156)

(user837 project work113)
(user837 project work141)

(user837 project work156)

(user956 project work113)
(user956 project work129)

(user103 project work141)

(user103 project work138)

Figure 3. A small fragment of an RDF dataset.

Indeed, rather than storing each URI or literal value

directly as a string, query processors usually associate a

unique numerical number to each resource and store this

number instead. For example, since user123 would be

represented by a URI like http://example.com/users/

user123 in a real-world RDF graph, storing the numbers

results in large space saving. Thus, the first step of

building the MDH* is to transform the RDF triples into

the numerical space. We apply a hash function to the

RDF triples for numerical numbers. In this case, these

numbers are points in the n-dimensional data space

whose coordinates correspond to 3-dimensional cubes for

(s, p, o).

The coordinates are inserted one after another and

aggregated into regions. Each region maintains a list of

resources. Each resource in the triple table is extended

with two additional occurrences in order to speed up join

queries rather than single RDF triple. The occurrences

specify s# and o#, where s# indicates the number of

subjects in which o occurs as subjects in the RDF dataset

and similarly o# indicates the number of objects in which

s occurs as objects.

We observe that a fair amount of triples in many real

RDF datasets are used as subject of a triple and object of

another triple. For example, Yuan et al. [17] showed that

more than 57% subjects are also objects. In this paper, we

show that the join query performs better if we maintain a

set of pairs (coordinates, occurrences).

Definition 3 : A pair (t, v) is an RDF tuple with count

values v, where t is a triple of points (x, y, z) and v is

occurrences s# and o#. Note that the RDF tuple ((x, y, z),

(s#, o#)) is equivalent to the 5-column tuple (x, y, z, s#,

o#)

Using our running example, we assume that converted

hash values would be represented as Table II. Then,

consider the triple (user123, knows, user635), which

resolves to the key (11, 12, 13) to insert into our index.

The occurrences are initialized (0, 0) if o was not present

in s and s not present in o respectively before, otherwise

the values are incremented by one. Fig. 4 illustrates how

the MDH* looks like after adding occurrences.

TABLE II. HASH VALUES FOR EXAMPLE DATASET

subject predicate object

user123=11 user234=31

user345=1 user635=13
user837=4 user956=33

user103=23

knows=12
project=32

user635=13 user724=3
user837=4 user956=33

user103=23 work113=6

work129=26 work138=36

work141=17 work156=38

(11, 12, 13, 2, 0) (11, 12, 3, 0, 0) (11, 12, 4, 3, 0) (31, 12, 33, 2, 0) (31,
12, 23, 2, 0) (1, 12, 13, 2, 0) (1, 12, 3, 0, 0) (1, 12, 23, 2, 0) (13, 32, 17,

0, 2) (13, 32, 38, 0, 2) (4, 32, 6, 0, 1) (4, 32, 17, 0, 1) (4, 32, 38, 0, 1)

(33, 32, 6, 0, 1) (33, 32, 26, 0, 1) (23, 32, 36, 0, 2) (23, 32, 17, 0, 2)

Figure 4. RDF tuples with occurrences.

We decided to use the equi-width histograms for the

MDH*, because they can be built efficiently even if the

exact distribution is not known in advance. In the

histograms, each partition defines the boundaries of a

region in the dimension. Fig. 5 shows our example data in

a multidimensional equi-width histogram.

10 20 30

10

40

20

40

30

0
0 Subject

Predicate

Object

Figure 5. Coordinates corresponding to hash values.

Since counting and storing the occurrences may be

costly, adding the counts can be performed as a batch

operation once the MDH has been constructed. When a

query is given, the first step is to determine relevant

numerical triples that answer the query. By looking up

these triples in the MDH*, we obtain a set of resources

Lecture Notes on Information Theory Vol. 2, No. 3, September 2014

245©2014 Engineering and Technology Publishing

potentially providing relevant data. In the next section,

we show how we can execute join queries efficiently over

the MDH*.

B. Query Processing

There are two types SPARQL queries: single triple

pattern query and join triple pattern query. Processing

queries with single triple pattern is straightforward. When

a query consists of multiple triple patterns that share at

least one variable, we call the join triple pattern query. In

SPARQL queries, there are eight triple patterns [3].

Among them (?s, ?p, ?o) is required a full scan, and the

number of triples matching (s, p, o) is 0 or 1. Hence, we

need to estimate the selectivity of six triple patterns: (s,

p, ?o), (?s, p, o), (s, ?p, o), (s, ?p, ?o), (?s, ?p, o), (?s,

p, ?o).

Due to the page length limit, we describe here the steps

for evaluating (s, p, ?o). We process this pattern in three

steps: (1) Using the MDH*, we locate all regions that

possibly provide the result. (2) We need to find the set of

relevant resources in the regions. (3) Now we examine

each relevant resource to find objects matching the given

values of s and p. First of all, (s, p, ?o) is converted into a

set of coordinates in the data space by applying the same

hash function that we used for the index creation.

However, in contrast to building hash values for RDF

triples, triple patterns for queries might contain variables.

Because of these variables, we have to work with regions

instead of points. Using a query line discussed in Section

2, we can determine all regions contained in the MDH*

that overlap with the line. After having identified all

relevant regions, we can determine the set of relevant

resources.

Since the join query is expressed by conjunction of

multiple triple patterns, a prerequisite is to identify

relevant resources that possibly provide the result for a

basic triple pattern. With the help of our MDH*, we can

choose the data regions that contain all possible triples

matching the patterns. Then, we can find sets of relevant

resources. A join algorithm can be implemented by using

many various techniques (e. g., merge join, hash join,

nested-loop join, etc.) known from relational databases. A

straightforward implementation of a region join is the

nested-loop join. Algorithm 1 provides a detail

illustration of our occurrence-based join algorithm. The

input for the algorithm is a set of pairs of relevant

resources. Two input sets (i. e., L and R) are compared in

the inner loop using equi-join techniques for determining

the matching between sets.

Algorithm 1: Occurrence-based Join Algorithm

Result = ∅

For each tuple l in L

For each tuple r in R

 If s# ≠ 0

 If l and r satisfy the join condition Then

 l and r tuples are added to Result

 s# is decremented by one

 Else

 Else break

Endfor

Endfor

Considering Example 1 of (s, p, ?o) (?s, p, ?o)

pattern, if s# is not 0, then perform the join operation.

This operation checks whether the two tuples satisfy the

join condition. If the join condition is satisfied, then the

values of these two tuples are added to the result and s# is

decremented by one. This process repeats until s#

becomes 0. Thus our algorithm can quickly prune

unnecessary scanning that is guaranteed not to match the

query. Similar process applies to o# if (?s, p, o) (?s,

p, ?o) pattern is given.

V. EXPERIMENTAL EVALUATION

In our experiments we compared our method with

some existing methods. Our objective is to show that we

can achieve excellent join query performance with small

amount of storage. Example 1 shows a SPARQL query

that expresses a join between two triple patterns like (s,

p, ?o) and (?s, p, ?o). Fig. 6 depicts a join tree for the

example and Fig. 7 illustrates two input sets for the join

algorithm on Example 1. We shaded the input sets in this

figure.

user123 knows ?k ?k project ?p

Figure 6. Join tree for Example 1.

(11, 12, 13, 2, 0) (11, 12, 3, 0, 0) (11, 12, 4, 3, 0) (31, 12, 33, 2, 0) (31,

12, 23, 2, 0) (1, 12, 13, 2, 0) (1, 12, 3, 0, 0) (1, 12, 23, 2, 0) (13, 32, 17,

0, 2) (13, 32, 38, 0, 2) (4, 32, 6, 0, 1) (4, 32, 17, 0, 1) (4, 32, 38, 0, 1)
(33, 32, 6, 0, 1) (33, 32, 26, 0, 1) (23, 32, 36, 0, 2) (23, 32, 17, 0, 2)

Figure 7. Two input sets for the join.

Example 2: After the SPARQL query is translated and

submitted to the query processor, existing methods

usually perform a nested-loop join on the column of o

accordingly. Roughly estimated, the join will cost 49=

36 times of tuple comparison. Once the query and data

are much more complex, the cost will increase

dramatically. Our method is motivated to decrease the

join cost by considering the fact that if s# is 0, then it is

not necessary to compare the tuples. Thus, two tuples of

(11, 12, 13, 2, 0) and (11, 12, 4, 3, 0) are selected as

candidates for the join. We only perform the join

operations within s# count. The join cost is reduced to

2+0+5=7 times of tuple comparison.

Our experiments compared our MDH* method (we

refer to MDH) with Quad [3] and Live Exploration [12]

(we refer to Live). Quad is one of the local approaches,

while Live is one of the distributed approaches. In this

work we ran two sets of experiments: in the first we

measured the join response time, and in the second we

measured the amount of storage. In order to evaluate the

experiments, we used a synthetic dataset that contained

100,000 RDF triples in the data space. The reason for

using a synthetic dataset is that we can control parameters

such as the density and the number of triples. The triple is

generated by randomly generating its point with a

uniform distribution.

The first set of experiments concerns the join response

time. In Fig. 8, the join response time is presented for the

MDH, Quad, and Live. We can see that both MDH and

Lecture Notes on Information Theory Vol. 2, No. 3, September 2014

246©2014 Engineering and Technology Publishing

Quad can achieve satisfying results, as they perform join

queries based on the index structures. MDH performance

is a little worse than Quad. The reason is that MDH

considers only an auxiliary index without storing RDF

triples entirely. Live performance is the worst, because it

relies on a large number of unreliable resources.

Figure 8. Join response time.

The result of the second set is illustrated in Fig. 9. This

figure shows the amount of storage for MDH, Quad, and

Live. From the figure, we can observe that Live and

MDH require less storage. The reason is that both try to

save space without copying all data. Overall, MDH is a

slightly worse than Live, because MDH has an index with

occurrences. But there is not much difference between

them. Quad is significantly higher than the other two,

because it only considers the copying data into a

centralized registry.

Although MDH is not the best performance, as the

experiment results indicate, it performs well overall. The

main advantage of MDH is not necessary the time-

consuming index construction. Therefore, it seems

reasonable that MDH is more useful than Quad and Live.

Figure 9. Amount of storage.

VI. CONCLUSIONS

In this paper, we propose the extended

multidimensional histograms called MDH* to store,

index, and query Linked Data. We also present an

occurrence-based join algorithm to increase the efficiency

of the MDH*. The extended feature with two additional

occurrences is taken into consideration which might help

reduce the join costs. We evaluate the MDH* with

existing methods. The experimental results demonstrate

that our algorithm based on the MDH* is both query

efficient and space efficient with a fast and compact

index structure.

As components of future work, the simple equi-width

histograms can be extended to more accurate structures

using database indexing technologies. Well-known

indexing techniques from the literature (e. g., Quad Trees,

k-d Trees, R* Trees, and Graph Trees) can be used for

building Linked Big Data efficiently. While various

optimization techniques of databases have been

extensively studied in the research community, Linked

Data techniques, to the best of our knowledge, are less

explored. Our work will focus on developing an optimal

plan that can apply to our system.

ACKNOWLEDGMENT

This research was supported by Basic Science Resear-

ch Program through the National Research Foundation of

Korea (NRF) funded by the Ministry of Education,

Science, and Technology (No. 2010-0008303).

REFERENCES

[1] S. Auer, J. Lehmann, A. N. Ngomo, and A. Zaveri, “Introduction
to linked data and its lifecycle on the Web,” in Proc. 9th Int.

Summer School, Mannheim, Germany, 2013, pp. 1-90.

[2] M. Svoboda, “Efficient querying of distributed linked data,” in
Proc. Joint EDBT/ICDT PhD Workshop, 2011, pp. 45-50.

[3] A. Harth and S. Decker, “Optimized index structures for querying

RDF from the Web,” in Proc. 3rd Latin American Web Congress
(LA-Web), 2005, pp. 71-81.

[4] T. Neumann and G. Weikum, “RDF-3X: A RISC-style engine for

RDF,” in Proc. 34th Int. Conf. on Very Large Data Bases, 2008,

pp. 647-659.

[5] C. Wess, P. Karras, and A. Bernstein, “Hexastore: Sextuple

indexing for semantic Web data management,” in Proc. 34th Int.
Conf. on Very Large Data Bases, 2008, pp. 1008-1019.

[6] M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler, “Matrix ‘Bit’

loaded: A scalable lightweight join query processor for RDF data,”
in Proc. 19th Int. Conf. on World Wide Web, 2010, pp. 41-50.

[7] B. Liu and B. Hu, “Path queries based RDF index,” in Proc. 1st

Int. Conf. on Semantics, Knowledge and Grid, 2005, pp. 91-93.
[8] T. Tran and G. Ladwig, “Structure index for RDF data,” in Proc.

Workshop on Semantic Data Management (SemData@VLDB),

2010.
[9] B. Quilitz and U. Leser, “Querying distributed RDF data sources

with SPARQL,” in Proc. 5th European Semantic Web Conf., 2008,

vol. 5021, pp. 524-538.
[10] A. Langegger, W. Wob, and M. Blochl, “A semantic middleware

for virtual data integration on the Web,” in Proc. 5th European

Semantic Web Conf, Lecture Notes in Computer Science., vol.

5021, 2008, pp. 493-507.

[11] O. Gorlitz and S. Staab, “Federated data management and query

optimization for linked open data,” New Directions in Web Data
Management 1, pp. 109-137, 2011.

[12] O. Hartig, “An overview on execution strategies for linked data

queries,” Datenbank Spektrum, vol. 13, no. 2, pp. 89-99, 2013.
[13] G. Ladwig and T. Tran, “Linked data query processing strategies,”

in Proc. 9th Int. Semantic Web Conf., 2010, pp. 453-569.

[14] J. Umbrich, K. Hose, M. Karnstedt, A. Harth, and A. Polleres,
“Comparing data summaries for processing live queries over

linked data,” World Wide Web, vol. 14, no. 5-6, pp. 495-544, 2011.

[15] A. Harth, K. Hose, M. Karnstedt, A. Polleres, K. U. Satler, and J.
Umbrich, “Data summaries for on-demand queries over linked

data,” in Proc. 19th Int. Conf. on World Wide Web, 2010, pp. 411-

420.
[16] SWEO Community Project. (January 2007). Linking open data

[Online]. Available: http://www.w3.org/wiki/SweoIG/TaskForces/
CommunityProjects/LinkingOpenData

[17] P. Yuan, P. Liu, B. Wu, and L. Liu, “TripleBit: A fast and

compact system for large scale RDF data,” in Proc. 39th Int. Conf.
on Very Large Data Bases, 2013, pp. 517-528.d

Lecture Notes on Information Theory Vol. 2, No. 3, September 2014

247©2014 Engineering and Technology Publishing

Yongju Lee received the Ph.D. degree in
Information and Communication Engineering,

KAIST (Korea Advanced Institute of Science

and Technology) in 1997, Korea. He is now a
Professor in School of Computer Information,

Kyungpook National University, Sangju,

Korea. He has published more than 70 papers
in domestic and international conferences and

journals. His current research interests include

semantic web technology, web services, cloud
computing, and mobile applications.

.

Lecture Notes on Information Theory Vol. 2, No. 3, September 2014

248©2014 Engineering and Technology Publishing

