

Enriching Vague Queries by Type-2 Fuzzy

Orderings

Saad M. Darwish
1
, Tamer F. Mabrouk

2
, and Yasser F. Mokhtar

1

1
Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt

2
Alexandria Higher Institute of Engineering & Technology, Alexandria, Egypt

Email: saad.saad@alexu.edu.eg, tamer.fouad@aiet.edu.eg, yasserfakhry@hotmail.com

Abstract—Structural Query Language (SQL) is very

restrictive and very dominant tool that handles data that is

crisp and precise in nature; but it is unable to fulfill the

needs for data which is uncertain, imprecise, and vague in

nature. The human queries are rarely crisp, which need

unusual requirements to deal with it based on world

knowledge. These requirements are called Fuzzy Queries

(FQ) that realizes some degrees of truth. Mixing the

concepts of fuzzy set theory and SQL, FSQL is able to

process imprecise and ambiguous data and also able to

increase the facility of data retrieval based on linguistic

terms. This paper describes a flexible query interface based

on type-2 fuzzy logic. Hence, queries in natural language

with pre-defined syntactical structures are executed, and the

system uses a type-2 fuzzy process to provide answers. Type-

2 fuzzy logic (T2FL) system offers the capability of handling

a higher level of uncertainty than regular fuzzy logic, which

is heavily used in the previous works. T2FL can be used

when the situations are too uncertain to decide the exact

membership functions. FSQL seems to be a practically

feasible and efficient approach to contract with queries for

crisp data that include a certain tolerance for imprecision

compared to its SQL counterpart. Many experiments have

been made on real database that show the effectiveness of

the proposed model compared to the existing type-1 fuzzy

systems and also show the high accuracy in the results. 

Index Terms—SQL, interval type-2 fuzzy logic, fuzzy

linguistic values, fuzzy query, fuzzy database

I. INTRODUCTION

Database systems are considered one of the actual vital

tools of data processing in terms of protection,

administration and retrieval the information particularly

with the vast amount of data and the complexity of

operations on them. The most database applications are

based on relational database but in real-world applications,

there are a big number of requirements are not being

implemented because of lack of accuracy and clarity of

the data which is a bit vague, imprecise and uncertain. It is

no doubt that the quality and accuracy of information

directly aid to make the right decision and be very

valuable in data-intensive applications (e.g. CAD/CAM,

geographical and environmental information systems, and

decision support systems) [1].

Manuscript received May 12, 2014; revised August 1, 2014.

Although SQL is a very powerful tool, it is impotent to

placate needs for data selection based on linguistic

expressions and degrees of truth [2]. Linguistic

expressions are motivating for data extraction, analysis,

dissemination and decision making. Several real

applications need to manage vague or fuzzy information

and to make benefit their users from flexible queries.

Fuzzy set theory is a useful tool to handle imprecision.

The application of this theory in the area of fuzzy

databases, to compact with imprecision and vagueness has

been widely addressed in the literature [2]-[4]. Fuzzy

query is not only a querying tool; it improves the meaning

of a query and extracts additional valuable information [5].

In general, the study area of fuzziness in database

management systems (DBMS) has resulted in a number of

models aimed at the representation of imperfect

information in databases (fuzzy database), or at enabling

non-precise queries (often called fuzzy queries) on

conventional database schemas [1]-[5]. There are also

other concerns in the use of fuzzy sets theory in relational

databases such as efficiency of fuzzy queries execution;

fuzzy functional dependencies/ constraints, fuzzy logical

databases, but they are beyond the scope here. The crucial

idea in fuzzy queries consists in extending the SQL

language and adding a supplementary layer to the

relational DBMS to assess the fuzzy predicates [6]. These

fuzzy predicates permit to have a range of answers (each

one with a membership degree under shapes of linguistic

expressions) in order to offer to the user all intermediate

variations between the completely satisfactory answers

and those completely dissatisfactory.

Two possible solutions to implement a fuzzy relation

database (FRDMS) [1], [4] :(1) develop a specific Fuzzy

DBMS to evaluate the queries written in FSQL, by

analogy with the strategy put in work in the usual DBMS,

but the development cost would risk to be prohibitive, (2)

use the capacities of the commercial DBMS (in particular

their mechanisms of optimization) while attaching a

software layer that allows to support the fuzzy concept.

The last solution, characterized by its easiness realization,

consists in cooperating the FSQL server and the DBMS.

This solution has been concerned with the problem of how

query interfaces to conventional databases with crisp data

can be extended such that a flexible explanation of queries

is possible-in particular, with the motivation to advise

alternatives which are close to match the criteria in case

that a query fails completely.

Lecture Notes on Information Theory Vol. 2, No. 2, June 2014

177©2014 Engineering and Technology Publishing
doi: 10.12720/lnit.2.2.177-185

mailto:saad.saad@alexu.edu.eg
mailto:tamer.fouad@aiet.edu.eg
mailto:yasserfakhry@hotmail.com

FSQL is an add-on to traditional relational databases

that acts as a proxy between the user and the database [6]-

[9]. Since FSQL connects with the underlying database

only on the basis of standard SQL, no alterations to the

database system or the data model have to be made, which

lets easy integration into existing applications. Fuzzy

upgrading of SQL queries has advantages in cases when

the user cannot unambiguously define selection criteria or

when the user wants to examine data that almost meet the

given criteria.

The concept of a type-2 fuzzy set was announced as an

extension of the concept of an ordinary fuzzy set. Type-2

fuzzy sets allow us to handle linguistic uncertainties or

vagueness, as typified by the adage "words can mean

different things to different people"[10]. A fuzzy relation

of higher order (e.g., type-2) has been regarded as one

way to increase the fuzziness of a relation and hence raises

ability to handle inexact information in a logically correct

manner. Type-2 fuzzy set is characterized by a fuzzy

membership function, i.e., the membership grade for each

element of this set is a fuzzy set in [0,1], unlike a type-1

set where the membership grade is a crisp number in [0,1].

Such sets can be used in situations where there is

uncertainty about the membership grades themselves, e.g.,

an uncertainty in the shape of the membership function or

in some of its parameters [11].

A. Paper Motivation and Contribution

The objective is to provide users with new querying

capabilities based on conditions that involve preferences

and describe more or less acceptable items, thus defining

flexible queries. Since the problem is no longer to decide

whether an element satisfies (or not) a condition but rather

the extent to which it satisfies this condition, one of the

advantages lies in the "natural" ordering of the answers

(decision) that allows for calibration if chosen.

In this paper, we provide the key ideas how the

functionality of FSQL can be extended such that a flexible

interpretation of conditions like “is at least”, “is at most”

and" is about" can be maintained. We extend the work of J.

Mishra [9] to enhance dealing with fuzzy linguistic values

on crisp database by using type-2 fuzzy logic, which can

be very useful to handle high levels of uncertainties

properly specially with the large size of databases. This

language grants new concepts such higher order fuzzy

attributes. A further important feature of the suggested

system is the possibility of weighting both predicates and

operands of algebraic operators so as to better fit user

preferences/requirements and to capture more meaning of

the data with suitable interpretations for the type-2 fuzzy

membership functions.

Besides this introduction, this paper includes four

sections. Section 2 presents the architectures already used

for the flexible querying modeling. Section 3 presents our

new architecture of the fuzzy query. Section 4 makes an

evaluation of this work and Section 5 gives conclusion

and some future perspectives of it.

II. LITERATURE OVERVIEW

FSQL area of research is not new one but there are still

many opportunities for the enhancement of existing

approaches and for producing new approaches. Although

there are some variations according to the discriminations

of different implementations, the answer to a fuzzy query

sentence is generally a list of records, ordered by the

degree of matching. Brief analysis of these proposals and

their variations can be found in [1], [12]. The most

advantages of these proposals that it lead to develop many

techniques to handle vague and imperfect data to get more

accuracy. In the contrary of that, most of them use the

fuzziness in database through fuzzy database which

require some alterations in database structure and this

involves new entities like fuzzy conditions, fuzzy

comparators, fuzzy constants, fuzzy constraints, fuzzy

thresholds, linguistic labels and so on. Moreover, these

studies are limited to just some specific applications and

not stranded on theories of fuzzy database query

languages.

Research work on emerging a flexible natural language

interface for relational crisp databases has practiced

growth at a very high rate. This has led to incessant

research on natural language interfaces and query

execution related issues. Most existing natural language

interface to relational databases (NLI2DBs) are quit stiff

in interpreting natural language queries. They just look for

keywords in the sentence or using some patterns in

analyzing the user's input. Such approaches cannot deal

with questions in random formats. For instance, the

authors in [13] proposed architecture for fuzzy querying

along with an experimental implementation of the same.

The implementation is using some patterns that assist the

lexical analysis of fuzzy terms and parsing the fuzzy query

individually. Fuzzy query is interpreted by the parser and

the resulting semantic actions are carried out on MySQL

database. However, most NLI2DBs are domain-dependent,

as they need predefined knowledge of the working domain

in building templates or semantics rules.

In the context of fuzzy query language, many

researchers proposed extension to relational algebra in

order to develop a fuzzy SQL that offers the means for

performing queries with some uncertain concepts. For

example, the fuzzy query approach based on the fuzzy

Generalized Logical Condition (GLC) was presented [7].

This GLC enables matching fuzzy and classical

constraints in the same where clause and selects only

records that have the query satisfaction greater than zero

(true). It is also possible to use additional filtering

functions to choose suitable number of records or to set

the threshold value of the query command interface.

Authors in [6] and [12] provided new technique to

improve the fuzzy GLC for the where part of SQL in

classical relational crisp databases. In this way, fuzzy

queries are accessing relational databases in the same way

as with SQL. In [4], the authors discussed how 'IS'

predicates in the flexible query can be evaluated in the

presence of data that is modeled by fuzzy sets.

The work done by A. Branco et al. [14] has shown a

methodology that automatically creates fuzzy queries

from a training data set. The fuzzy queries are translated

Lecture Notes on Information Theory Vol. 2, No. 2, June 2014

178©2014 Engineering and Technology Publishing

from a set of fuzzy weighted classifier rules. A pruning

procedure to simplify the fuzzy rule base and the resulting

set of fuzzy queries was also proposed. The fuzzy queries

are able to retrieve an ordered list of the records according

to the fuzzy rule based model learned by the fuzzy

classifier. The precision and recall analysis of the selected

records of the fuzzy query allow the user to select an

optimal threshold for other data.

In [15] the authors presented a new approach for fuzzy

query processing based on automatic clustering techniques.

Their proposed algorithm does not need to define the

number of clusters of the data in advance, which makes it

more convenient and more flexible to cluster data. Other

researchers in [16] presented a new aggregation operator

and the corresponding algorithm to evaluate the fuzzy

query. The main idea is to dynamically define sets of

linguistic labels on limited attribute domains, determined

by previous fuzzy selections. This operator provided an

accurate model for the discussed vague expression, with

respect to query semantic.

An important work presented by J. Mishra [9] where

the aim is to develop a formula which will first generate

the SQL statement of a given fuzzy query. Next the

generated SQL is supplied to the database to get the

resultant table. In this architecture, the author has defined

an algorithm to find the membership value for each tuple

on the relation based on the fuzzy attribute on which fuzzy

query made. Next decision maker will supply a threshold

value based on which corresponding SQL of a given fuzzy

query will be generated. In this case, type-1 fuzzy logic is

used to model attributes (i.e. membership value for each

tuple is crisp number in [0, 1]).

In general, management of SQL using traditional type-

1 fuzzy sets to build flexible query cannot handle high

levels of uncertainties appropriately particularly with the

huge size of the databases and the vast amount of data that

is usually largely similar and difficult to deal with it. In

this paper, a revised system has been developed to harness

the advantages of using type-2 fuzzy set inside SQL to

retrieve records with high levels of uncertainties. The

investigational appraisal shows that this type-2 fuzzy

query system can yield good results on real world

database, demonstrating its effectiveness towards solving

the problem facing type-1 fuzzy query to significantly

improve the robustness of database query operations.

III. METHODOLOGY

The suggested prototype is constructed by the addition

of a layer around a classic DBMS as shown in Fig. 1. The

translation mechanism generates a procedural evaluation

program and determines the expressions that are used to

compute the membership degrees and separate if

necessary the tuples whose degree is lower to the fuzzy

threshold. Furthermore, a meta-base named type-2 fuzzy

meta-knowledge is defined that is formed by a table that

extend the DBMS dictionary or catalog in order to store

all necessary information to describe linguistic hedges and

to manipulate membership values.

The present framework fully exploit fuzzy logic for: (1)

modeling the similarity of the case attributes with respect

to different approximate concepts; (2) modeling the

retrieval conditions as well as the acceptability of the

retrieved cases. The system deals with fuzzy attributes

type 1 (FTYPE1): these are attributes with "precise data"

classic or crisp (traditional, with no imprecision).

However, they can have linguistic labels defined over

them, which allow us to make the query conditions for

these attributes more flexible. The use of flexible

predicates and linguistic quantifiers interpreted in the

framework of the type-2 fuzzy set theory is advocated for

defining a query language.

Figure 1. Proposed architecture of fuzzy SQL.

This architecture can effectively reduce complexity of

processing data and maintaining a database by way of

utilizing extra translation mechanism on the top of

existing DBMS. It also can balance the variety of data and

system performance through embedding more than type-2

fuzzy membership functions. By applying type-2 fuzzy

logic and SQL to the evaluation of records, we

significantly improve query robustness (i.e. we may found

more suitable candidate records that are fit to the query

operations). Complex multi-predicate queries can be

formed by means of logical connectives, whose semantics

is parameterized in order to adjust to specific scenarios.

The following subsections discuss each component of the

proposed architecture in detail.

A. Natural Query Interface

The interface actually is the first thing a user should

encounter. Then the user gets started with the system by

entering a query in his/her natural language. Many times

when querying a database; users do not wish to define the

precise limits of acceptance or rejection for a condition,

that is, they want to be allowed some imprecision in the

query. In other words, the satisfaction of a condition is a

matter of degree and a flexible query should provide

answers that would have had an empty response on a

Lecture Notes on Information Theory Vol. 2, No. 2, June 2014

179©2014 Engineering and Technology Publishing

classical relational SQL-type language. Moreover, it cans

easily rank-order the best answers, rather than showing a

long list of answers [17].

Natural language consists of fundamental terms called

“Linguistic variable” and “Linguistic values”. The

purpose of using the linguistic variable is to provide a

means of approximate characterization of phenomena that

is not defined properly. In our work user must select the

attribute (Linguistic variable) and its (linguistic terms or

labels) like what is the employees whose have a big salary

and small age. In our case, the linguistic terms for any

attribute are determined through the number of attribute's

clusters that is defined by the user. To avoid typing errors,

the wanted scenario for the user is to determine what kind

of data he wants to select by linguistic expressions and

degrees of truth.

In formal, the linguistic variable is a

quadruple  MCVEV ,),(, , where V is the name of the

linguistic variable, ni
i

eVE ,...,1},{)( represents a

set of linguistic values for the V and is ordered

set  jijeie  , having an odd cardinality, while C

symbolizes the crisp referential domain of the V, and M is

a mapping)()(CVE  that maps a fuzzy set on C for

each linguistic values of V. Thus, an order relation 

on)(VE is easy to define, for example little 

intermediate big. So is a semantic order relation [18].

These linguistic variables (quantifiers) are represented

as type-2 fuzzy set. This will improve the performance of

crisp selection of traditional SQL where record would not

be selected even if it is extremely close to the intent of the

query. This is the penalty paid for using crisp logic in

selection criteria. Herein, the user determines the shape of

fuzzy set, lower limit of fuzzy set and value of full query

satisfaction (fuzzy degree). The lower limit becomes part

of the WHERE clause. This clause access the database

and selects records that have Query Index (QI) >0. The QI

is used to indicate how the selected record satisfies a

query criterion and determined through query satisfaction.

The QI has values from the [0,1] interval with the

following meaning: 0-record does not satisfy a query, 1-

record fully satisfies the query, interval (0,1)-record

partially satisfies a query with the distance to the full

query satisfaction. In the QI calculation step, the

differences between fuzzy set shapes become important.

Conditions in queries contain these basic comparison

operators: >, <, and = when numerical attributes in query

conditions are used. In our case, these crisp comparison

operators are adapted for fuzzy queries (linguistic

quantifiers) in the following way: operator > was

improved with fuzzy set high value, operator < was

improved with fuzzy set small value and operator = was

improved with fuzzy set about value. Furthermore,

proportional quantifiers such as "most" can be represented

by fuzzy subsets of the unit interval. According to the

above analysis, three types of linguistic terms in this

research are supported: high value, small value and about

value of attribute. The WHERE clause contains one

attribute or more attributes that are connected with fuzzy

aggregation operators. These connectors are able to

compute a global satisfaction degree starting from the

satisfaction degrees of each vague selection criterion with

respect a certain model of the fuzzy connections. Usually,

the minimum and maximum functions stand for fuzzy

conjunctive and disjunctive connections; the complement

stands for the fuzzy negation. But there are many other

propositions in the literature for defining aggregation

connections [19].

In formal, a query is a set of

pairs   nn vfvfq ,1,1 ,... such that each if is an attribute

(field) and each iv is either (1) a fuzzy linguistic term

defined over)(ifRange with type-2 membership function

such that  1,0)(ifRange or (2) an expression of the

kind "," ixiop such that)(ifRangeix  and iop is a

binary operator (either crisp or fuzzy) defined over if

[16]. For instance, if the fuzzy terms young and old are

defined over the attribute age, we could be interested in

the fuzzy expression:
 old)veryNOTANDOR(oldyoungage,

let us indicate),(ivifP the fuzzy predicate related to the

assignment of a condition iv to attribute (linguistic

values are specified). For example  youngageP , is true

with degree)(xyoung if young is the membership

function of the fuzzy set young defined over age and the

attribute age assumes values x. Notice that in our

framework, each attribute in the database does not have

any fuzzy specification in its structure; fuzzy information

is used only at the query level to retrieve stored cases on

the basis of an approximate (fuzzy) match.

 The retrieval condition induced by q is the fuzzy

should be performed through OR connective. Predicate

 ivifPn
iqR ,1  where n

i 1 is a Boolean expression

involving all the predicates P, and n is the number of

attribute specified in the query. If for some attributes we

ask to combine similarities in such a way that a 0-

similarity fully contributes to non-equivalence, then a t-

norm combination should be used, resulting in a predicate

composition through the AND  connective. If on the

contrary, a 0-similarity does not contribute at all to non-

equivalence, then a t-conorm should be the choice and the

predicate composition should be performed through 

connective.

Given a set of tuples c, a query case q and the retrieval

condition R, the matching degree of c to q is

   cqc R , . So given a database DB, and a fuzzy

threshold λ, the retrieval set is the set

  )(/),,(,qcDBcDBqS ii . The problem of finding

the stored cases that best match the query, is then reduced

to that of finding the set of cases satisfying, to an

acceptable degree of match (represented by λ), the

conditions specified in the query itself. In particular, we

can consider the following syntax:

SELECT (λ) A FROM R WHERE cf

Lecture Notes on Information Theory Vol. 2, No. 2, June 2014

180©2014 Engineering and Technology Publishing

which meaning is that a set of tuples with attribute set A,

from relation set R, satisfying the condition
cf with

degree μ ≥ λ is returned. If a fuzzy operator θ is defined

on attribute f, the expression  vf can be fuzzified by

transforming the crisp operator = into θ.

B. Clustering

The first step after identifying variables through the

interface (choosing the attributes to be queried and

number of attribute's linguistic terms in each attribute) is

to semantically cluster the attribute' values according to

required linguistic labels. Clustering is a mathematical

tool that attempts to discover structures or certain patterns

in a data set, where the objects inside each cluster show a

certain degree of similarity [20]. The output from a

clustering algorithm is basically a statistical description of

the cluster centroids with the number of components in

each cluster. The k-means algorithm is well known for its

efficiency in clustering large data sets [21].

Given a set of numeric attribute 1...n)F,iF(fi  , the k-

means algorithm searches for a partition of F into k

clusters that minimizes the within groups sum of squared

errors. This process is often formulated as the following

mathematical problem P [22]:

Minimize),Q(fdwP(W,Q) li

k

1l

n

1i i,l  


Subject to 


k

l liw
1 , 1 kln, 1i1   1,0, liw (1)

where W an KN  partition matrix,  KQQQ ,...1 is a set of

objects in the same object domain, and .)(.,d is the

squared Euclidean distance between two objects. The

method can be very useful to develop the initial

metaknowledge base, containing type-2 fuzzy definitions

of vague terms in the application domain, but ever later,

to maintain the actuality of these definitions with the

instantly database content.

C. Parsing

In this step, type-2 fuzzy interpreter should be designed

on the frame of given RDBMS using lexical and

syntactical analysis of queries. The interpreter transforms

the fuzzy SQL into a native SQL. Based on type-2 fuzzy

attribute, the interpreter fetches the domain set of that

attribute from the database and then finds the membership

value for fuzzy equality of each domain value of the fuzzy

attribute. If the query has more than one fuzzy attributes

then in similar way it finds the membership value for

equality for other fuzzy attribute. Finally it takes fuzzy

intersection or union of all membership values depending

on connector type between attributes (and/or) to get the

membership value of each tuple of the relation.

In our case, The FSQL server uses fuzzy

metaknowledge base to model the different types of type-

2 fuzzy attributes. This additional table stores attributes

which admit fuzzy treatment and different information

related to fuzzification of the different attributes such as

linguistic variables, type-2 membership values (T2MF)

and description of atomic values. Using predefined

parameters of membership function and attribute crisp

domain limits; the algorithm can obtain the definition for

linguistic values on a database attribute. A review of

several categories of linguistically terms with vague

meaning, their fuzzy modeling and specific operation are

presented in [19].

Figure 2. Three dimensional T2MF.

Fig. 2 illustrates all terminology of type-2 fuzzy set

(T2FS). Two important concepts distinguish T2MF from

T1MF [10], [11], [23]: secondary MF and FOU. The

secondary MF is a vertical slice of T2MF,  x,uh
A

, at each

value of xx ` ; i.e. the function
xA

Juuxh ),`(. The

amplitude of the secondary MF is called the secondary

grade. The domain]10[,J x  of the secondary MF is called

the primary membership of x, and u is the primary grade.

The FOU is a bounded uncertain region in the primary

memberships of a T2FS, and is the union of all primary

memberships. An upper and lower MF are two T1MF that

are bounds for FOU denoted by (x)h
A

and

Xx,xhA )(if]1,0[, 1),`( xA
JuXxuxh , the

secondary MFs are interval sets, which reflect a uniform

uncertainty at the primary memberships of x. Because all

the secondary grades are unity, an IT2FS can be denoted

by the interval of upper and lower MFs, i.e.

)](),([)(xhxhxh
AAA

 . The membership grade)(xh
A

 of

x in an T2FS is a T1FS in [0,1]. A useful theoretical

overview about T2FS and fuzzy operator can be found in

[23]. In this work, we utilize trapezoidal MF to describe

all variables that are defined as:

   

   














otherwise

ca

caax

x
A

 0,

axc if,/x-a

 cxc - if 1,

-cxa- if ,/

)( (2)

   

   














otherwise

db

dbbx

x
A

 0,

bxd if,/x-b

 dxd - if 1,

-dxb- if ,/

)( (3)

where bdandac  00 The range of)](),([xx
AA



specify the bounds of FOU according to the uncertainty

of the model. A greater uncertainty will result in a larger

spread of the FOU and increase the range

Lecture Notes on Information Theory Vol. 2, No. 2, June 2014

181©2014 Engineering and Technology Publishing

of)](),([xx
AA

 . Herein, we use the following formulas

[23].

),0[*)(,*)( kkxkx uAuA
 (4)

uk is uncertainty factor, the larger uk the larger

uncertainty,  and  are mean and variance of the

attribute respectively. Here, we depend on category's

cluster center to find parameters for building membership

function. These parameters are obtained through fuzzy

metaknowledge base where there is more than one type of

curves and the selection of the membership function type

depends on work requirements.

The computation complexity of general type-2 fuzzy

logic systems (T2FLSs) is very high, which makes them

very difficult to be deployed into practical applications;

hence, only an interval T2FLS (a special case of general

type-2 FLS) is today the most widely used T2FLS [24],

[25]. Once all crisp attribute' values have been fuzzified

into their respective linguistic values, the inference

engine will access the fuzzy rule base of the fuzzy system

to derive linguistic values for the intermediate as well as

the output linguistic variables. The two main steps in the

inference process are aggregation and composition.

Aggregation is the process of computing the values of the

IF (antecedent) part of the rules while composition is the

process of computing the values of the THEN

(conclusion) part of the rules.

We build collection of some IF–THEN rules which

reflect the semantic of fuzzy query in the first stage and

provide the behavior of process to achieve the result. The

inference engine combines rules and gives a mapping

from input type-2 fuzzy sets to output type-2 fuzzy sets

using fuzzy rule base. It is necessary to compute the

join (union) and the meet  (intersections). In formal,

if A and B are two type-2 fuzzy sets of the universe u and

)(xA is the grade of membership element x in the set A,

then the fuzzy union  and fuzzy  intersection are

defined as [3]:


fuzzy

BA uxxxxBAQI }:)})(),(max{,{(  (5)

}:)})(),(min{,{(uxxxxBAQI BA

fuzzy

  (6)

Regarding new aggregation operator like "within"

where the fuzzy model for the conjunction is defined as:

 }:)})(),(min{,{(/ uxxxxBAQI BBA

Within

   (7)

in which)(/ xBA is the satisfaction degree of the first

criterion relative to second one. Other types of fuzzy

operators could be added in the future to catch other

linguistic expressions.

After that, the Karnik-Mendel (KM) algorithm has been

employed for centroid type-reduction. The type-reducer

generates type-1 fuzzy set outputs which are then

converted into a numeric output through running the

defuzzifier. The defuzzified output of an interval singleton

type-2 FLS is computed as [26]:

 2
)(

ryly
xf


 (8)





 

 



















M

i

i

l

M

i

i

l

i

l

c

c

c

c

l

c

dxxdxx

dxxxdxxx
y

l

l

l

l

1

1

)()(

)()(








 (9)





 

 



















M

i

i

r

M

i

i

r

i

r

c

c

c

c

r

c

dxxdxx

dxxxdxxx
y

r

r

r

r

1

1

)()(

)()(








 (10)

where M presents the number of rules. A perfect FLS

should have ;f(x) 0 where 0 is the desired output but,

generally, there exist errors between the desired output

and actual output. We, therefore, need a design procedure

for tuning the parameters of the FLS in order to minimize

such errors. Herein, the satisfaction degree of each

linguistic value is computed for each table row, and the

min or max function is used to implement the fuzzy

connection between them to compute the global criterion

satisfaction degree of each tuple. Once this phase is

finished, the DBMS manages the crisp data translated by

the FSQL Server with a transparent way.

After the transformation of natural language query into

SQL, the application program having first established a

connection to the relational database, will now transfers

the SQL query to the RDBMS. The interface here can be

viewed as a reverse automated machine that displays the

output of the search process. This makes the entire

database search a cycle-like process. As a result of fuzzy

classification by using conventional SQL queries and

type-2 fuzzy interpreter, fuzzy classified data is presented.

The crucial difference between fuzzy queries and exact

queries is the number of records brought into the memory.

A large number of tuples will be selected by fuzzy

condition in comparison to the crisp one.

In a vague query, the selection criterion is no longer

Boolean, so it can be more or less satisfied by the database

tuples. Therefore, for each tuple, a satisfaction degree is

estimated, which stands for the measure of its

compatibility with the vague criterion. Including vague

criteria in a database query may have the possibility to

refine the results, assigning to each tuple the

corresponding degree of criteria satisfaction. Note that, the

membership function in a fuzzy set is not a matter of true

or false but a matter of degree. This approach decreases

the amount of transferred data across nets and calculation

of QIs is not significant burden for client computers.

IV. EXPERIMENTAL RESULTS

In this section we present evaluation results showing

the efficiency and effectiveness of the proposed system in

answering imprecise queries. We used two real-life

databases: (1) the car database Yahoo Autos

(http://autos.yahoo.com) and (2) the Census Dataset from

UCI Machine Learning Repository

Lecture Notes on Information Theory Vol. 2, No. 2, June 2014

182©2014 Engineering and Technology Publishing

(http://www.ics.uci.edu/learn/MLRepository.html), to

evaluate our system. In conventional DBMS, the problem

of query evaluation remains somewhat open since given a

query; in general the optimal evaluation way cannot be

reached. For fuzzy queries the process becomes more

complex for two reasons: (i) the available access paths

cannot be directly used, and (ii) a larger number of tuples

is selected by fuzzy conditions with respect to Boolean

ones. In the experiments, we select the probing queries

from a set of spanning queries i.e. queries which together

cover all the tuples stored in the database.

The evaluation focuses on two aspects: (1) the accuracy

of retrieval records in terms of precision rate (the fraction

of retrieved cases that are relevant from user queries); and

(2) the accuracy of retrieval records in terms of recall rate

(is the fraction of relevant cases that are retrieved). Both

precision and recall are therefore based on an

understanding and measure of relevance. During

evaluation, databases with different sizes are generated for

the series of experiments from the original database. The

experiments were conducted by testing queries under

different fuzzy threshold levels and different number of

records including 500, 1000, 2000 and 5000 records. In

general, the database querying access is usually limited

because the difficulty to realize and express precise

criteria to locate the information. The experimental results

are obtained by averaging from 5 independent trials.

Figure. 3. Comparative results.

Figure. 4. Precision rates for different database sizes with high fuzzy
level.

Figure. 5. Precision rates for different database sizes with medium fuzzy
level.

The first set of experiments were conducted to compare

between type-1 and type-2 fuzzy based vague querying for

each fuzzy threshold level including low, medium and

high. This procedure was repeated for database sizes and

an average is calculated. The x-axis corresponds to the

thresholds level and the y-axis corresponds to retrieval

accuracy values. The values plotted are precision as

shown in Fig. 3. The results reveal that the use of T2FL

generates a further precision rate improvement of 1-2%

for low level compare to T1FL. Furthermore, this

improvement increases for medium and high fuzzy

threshold. This improvement comes from the ability of

T2FL to deal with higher level of uncertainty than regular

fuzzy logic, which is heavily used in the previous works.

Validity of the results is confirmed by test group 2,

aimed at testing retrieval accuracy when they are applied

to the various database sizes with different fuzzy threshold.

Again, precision rates are growing by using T2FL-based

retrieval for both high and medium fuzzy levels in all

database sizes as outlined in Fig. 4 and Fig. 5, while the

actual precision rates for T2FL are convergent to the

T1FL for low fuzzy level as illustrated in Fig. 6. These

results support the claims made about the ability of the

existing T2FL –based system to deal effectively with

vague querying.

Figure. 6. Precision rates for different database sizes with low fuzzy
level.

Fig. 7 summarizes recall rates for different database

sizes with different fuzzy levels. As we can see, the

proposed system performs well for retrieving correct

answers for vague query depending on fuzzy threshold

values.

Figure. 7. Recall rates for different database sizes with different fuzzy
level.

V. CONCLUSION

This paper examines situations when database querying

process by the two valued realization of Boolean algebra

is not adequate and offers solution based on type-2 fuzzy

logic because the fuzzy logic is an approach for

computing based on "degrees of truth" rather than the

Lecture Notes on Information Theory Vol. 2, No. 2, June 2014

183©2014 Engineering and Technology Publishing

usual "true or false" logic. The suggested FSQL language

allows for dealing within a common framework with

several aspects relevant to similarity query processing as

well as with the inherent imprecision that characterizes

data, user requests, and query results.

Here we only address the problematic of building a

human-oriented interface capable of handling flexible

queries, since our focus is on the representation of

attributes by means of fuzzy sets to allow pseudo-natural

language queries. The main advantages of our work are:

(1) the existing implemented systems do not have to be

modified; (2) the fuzzy attributes are built from the raw

data; (3) the dialog with the system is done in a language

very close to natural language; (4) the answers are given

in a linguistic form, as well as a numeric form, which

helps the user to better understand the results obtained;

and (5) the interface can be used for other relational

databases, after an initial preprocessing to define the fuzzy

components with eventual slight changes in the grammar.

We believe that the research on the strict relationships

between retrieval from database and fuzzy logic will

eventually lead to the constructions of flexible reasoning

systems, able to deal with problems of greater and greater

complexity. As futures perspectives of this work, we

mention the automatic mapping of existing relational DB

to FRDB. This point is theoretically done but not

implemented yet, so we think that it will contribute to

make easier the use of the FRDB in real applications.

REFERENCES

[1] Z. M. Ma and L. Yan, "A literature overview of fuzzy database
models," Journal of Information Science and Engineering, no. 24,

pp. 189-202, 2008.

[2] M. Hudec, "An approach to fuzzy database querying, analysis and
realization," Computer Science and Information Systems, vol. 6,

no. 2, pp. 127-140, 2009.

[3] A. Garg and R. Rishi, "Querying capability enhancement in
database using fuzzy logic," Journal of Computer Science and

Technology, vol. 12, issue 6, pp. 38-46, 2012.

[4] A. Perović, A. Takači, and S. Skrbic, “Towards the formalization
of fuzzy relational database queries,” Acta Polytechnica

Hungarica, vol. 6, no. 1, pp. 185-193, 2009.

[5] A. Raipurkar and G. Bamnote, “Fuzzy logic based query
optimization in distributed database,” Int. Journal of Innovative

Research in Computer and Communication Engineering, vol. 1,

no. 2, pp. 422-426, 2013.
[6] D. Wei, L. Yi, and Z. Pei, “Application of fuzzy query based on

relation database,” in Proc. Int. Conference on Intelligent Systems

and Knowledge Engineering, China, 2007, pp. 168-172.
[7] J. Galindo, “New characteristics in FSQL, a fuzzy SQL for fuzzy

databases,” WSEAS Transactions on Information Science and

Applications, vol. 2, pp. 161-169, February 2005.
[8] M. Hudec, "Fuzzy improvement of the SQL," Yugoslav Journal of

Operations Research, no. 2, pp. 239-251, 2011.

[9] J. Mishra, “ Fuzzy query processing,” International Journal of
Research and Reviews in Next Generation Networks, vol. 1, no. 1,

pp. 35-38, 2011.

[10] M. Owais, “Subjective decision making using type-2 fuzzy logic
advisor,” in Proc. IEEE International Conference on Information

and Communication Technologies, Pakistan, 2009, pp. 127-133.
[11] C. Wagner and H. Hagras, “Toward general type-2 fuzzy logic

systems based on zslices,” IEEE Transactions on Fuzzy Systems,

vol. 18, no. 4, pp. 637-660, 2010.

[12] M. Hudec, Infostat, and S. Republic, “Fuzzy structured query

language (SQL) for statistical databases,” in Proc. Joint Meeting

on the Management of Statistical Information Systems, no. 12,
Luxembourg, 7-9 April 2008, pp.1-10.

[13] T. Mehta and P. Shah, "Handling fuzzy SQL on crisp databases
using Lex-YACC," International Journal of Computer

Applications, vol. 4, no. 2, pp. 5–8, July 2010.

[14] A. Branco, A. Evsukoff, and N. Ebecken,” Generating fuzzy
queries from weighted fuzzy classifier rules,” in Proc. ICDM

Workshop on Computational Intelligence in Data Mining, USA,

2005, pp. 21-28.
[15] S. M. Chen and H. R. Hsiao "A new approach for fuzzy query

processing based on automatic clustering techniques,” Information

and Management Sciences, vol. 18, no. 3, pp. 223-240, 2007.
[16] L. Portinale and S. Montani, “A Fuzzy logic approach to case

matching and retrieval suitable to SQL implementation,” in Proc.

20th IEEE International Conference on Tools with Artificial
Intelligence, USA, Nov. 2008, pp. 241 – 245.

[17] N. Nihalani, S. Silakari, and M. Motwani, "Natural language

interface for database: A brief review," International Journal of
Computer Science Issues, vol. 8, no. 2, pp. 600-608, March 2011.

[18] C. Turorie, S. Bumraru, and L. Dumitriu, "Relative aggregation

operator in database fuzzy querying," Technical Report,
University of Galati Fascicle, 2005.

[19] K. Singh, K. Prasad, M. Kumar, and A. K. Sharma, “Study of

imperfect information representation and FSQL processing,”
International Journal of Scientific and Enginnering Reasrch, vol.

3, no. 5, pp. 1-7, May 2012,

[20] T. Madhulatha, “An overview of clustering methods,” Journal of
Engineering, vol. 2, no. 4, pp. 719-725, Apr. 2012.

[21] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R.

Silverman, and A. Y. Wu, "An efficient k-means clustering
algorithm: analysis and implementation," IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 881-

892, July 2002.
[22] B. Manthey and H. Röglin, "Improved smoothed analysis of the k-

means method," in Proc. Twentieth Annual ACM-SIAM

Symposium on Discrete Algorithms, USA, pp. 461-470, 2009.
[23] O. Castillo and P. Melin, “Type-2 fuzzy logic: Theory and

applications,” Springer-Verlag Berlin Heidelberg, 2008.

[24] Q. Liang and J. Mendel, “Interval type-2 fuzzy logic systems:
Theory and design,” IEEE Transactions on Fuzzy Systems, vol. 8,

no. 5, pp. 535-550, 2000.
[25] O. Castillo and P. Melin, “A review on the design and

optimization of interval type-2 fuzzy controllers,” Applied Soft

Computing, vol. 12, pp. 1267–1278, 2012.
[26] F. Liu, “An efficient centroid type reduction strategy for general

type-2 fuzzy logic system,” Information Sciences, vol. 178, no. 9,

pp. 2224–2236, 2008.

Saad M. Darwish received his Ph.D. degree

from the Alexandria University, Egypt. His
research and professional interests include

image processing, optimization techniques,

security technologies, and machine learning. He
has published in journals and conferences and

severed as TPC of many international

conferences. Since Feb. 2012, he has been an
Associate Professor in the Department of

Information Technology, Institute of Graduate

Studies and Research, Egypt.

Tamer F. Mabrouk received the B.Sc. in
Computer Engineering from Arab Academy

for Science & Technology and Maritime

Transport (AASTMT) in 1997. He held the
M.Sc. degree in Information Technology from

the Institute of Graduate Studies and Research

(IGSR), Department of Information
Technology, Alexandria University in 2004.

He received his Ph.D. degree from Alexandria

University for a thesis in Multi-Agent System
and Business Intelligence in 2009. His present research interests are

currently focused on Database Management, Cloud Computing and

Artificial Intelligence. He has published in journals and conferences and
severed as TPC of many international conferences. Since Dec.2010, he

has been an Assistant Professor in the Department of Computer

engineering, Alexandria Higher Institute of Engineering & Technology,
AIET.

Lecture Notes on Information Theory Vol. 2, No. 2, June 2014

184©2014 Engineering and Technology Publishing

http://dl.acm.org/author_page.cfm?id=81100299383&coll=DL&dl=ACM&trk=0&cfid=297771654&cftoken=87442183
http://dl.acm.org/author_page.cfm?id=81322505306&coll=DL&dl=ACM&trk=0&cfid=297771654&cftoken=87442183
http://www.sciencedirect.com/science/journal/00200255
http://www.sciencedirect.com/science/journal/00200255/178/9

Yasser F. Mokhtar received a bachelor's
degree in accounting from the faculty of

commerce, Alexandria University, Egypt in

1993. He held the diploma degree in
information technology and accounting

automated from faculty of commerce,

Alexandria University, Department of
Information Technology, University of

Alexandria in 1995. He works as Computer

science teacher in faculty of Commerce
Alexandria University. And currently is the director of administration

and technical support databases in the Egyptian Petrochemicals Co. He

completed study of Pre-Masters Research from the Institute of Graduate
Studies and Research (IGSR), Department of Information Technology,

University of Alexandria and is preparing to discuss Master's Thesis.

Lecture Notes on Information Theory Vol. 2, No. 2, June 2014

185©2014 Engineering and Technology Publishing

