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Abstract—Structural Query Language (SQL) is very 

restrictive and very dominant tool that handles data that is 

crisp and precise in nature; but it is unable to fulfill the 

needs for data which is uncertain, imprecise, and vague in 

nature. The human queries are rarely crisp, which need 

unusual requirements to deal with it based on world 

knowledge. These requirements are called Fuzzy Queries 

(FQ) that realizes some degrees of truth. Mixing the 

concepts of fuzzy set theory and SQL, FSQL is able to 

process imprecise and ambiguous data and also able to 

increase the facility of data retrieval based on linguistic 

terms. This paper describes a flexible query interface based 

on type-2 fuzzy logic. Hence, queries in natural language 

with pre-defined syntactical structures are executed, and the 

system uses a type-2 fuzzy process to provide answers. Type-

2 fuzzy logic (T2FL) system offers the capability of handling 

a higher level of uncertainty than regular fuzzy logic, which 

is heavily used in the previous works. T2FL can be used 

when the situations are too uncertain to decide the exact 

membership functions. FSQL seems to be a practically 

feasible and efficient approach to contract with queries for 

crisp data that include a certain tolerance for imprecision 

compared to its SQL counterpart. Many experiments have 

been made on real database that show the effectiveness of 

the proposed model compared to the existing type-1 fuzzy 

systems and also show the high accuracy in the results.  

  

Index Terms—SQL, interval type-2 fuzzy logic, fuzzy 

linguistic values, fuzzy query, fuzzy database 

 

I.  INTRODUCTION 

Database systems are considered one of the actual vital 

tools of data processing in terms of protection, 

administration and retrieval the information particularly 

with the vast amount of data and the complexity of 

operations on them. The most database applications are 

based on relational database but in real-world applications, 

there are a big number of requirements are not being 

implemented because of lack of accuracy and clarity of 

the data which is a bit vague, imprecise and uncertain. It is 

no doubt that the quality and accuracy of information 

directly aid to make the right decision and be very 

valuable in data-intensive applications (e.g. CAD/CAM, 

geographical and environmental information systems, and 

decision support systems) [1].  

                                                           
Manuscript received May 12, 2014; revised August 1, 2014. 

Although SQL is a very powerful tool, it is impotent to 

placate needs for data selection based on linguistic 

expressions and degrees of truth [2]. Linguistic 

expressions are motivating for data extraction, analysis, 

dissemination and decision making. Several real 

applications need to manage vague or fuzzy information 

and to make benefit their users from flexible queries. 

Fuzzy set theory is a useful tool to handle imprecision. 

The application of this theory in the area of fuzzy 

databases, to compact with imprecision and vagueness has 

been widely addressed in the literature [2]-[4]. Fuzzy 

query is not only a querying tool; it improves the meaning 

of a query and extracts additional valuable information [5]. 

In general, the study area of fuzziness in database 

management systems (DBMS) has resulted in a number of 

models aimed at the representation of imperfect 

information in databases (fuzzy database), or at enabling 

non-precise queries (often called fuzzy queries) on 

conventional database schemas [1]-[5]. There are also 

other concerns in the use of fuzzy sets theory in relational 

databases such as efficiency of fuzzy queries execution; 

fuzzy functional dependencies/ constraints, fuzzy logical 

databases, but they are beyond the scope here. The crucial 

idea in fuzzy queries consists in extending the SQL 

language and adding a supplementary layer to the 

relational DBMS to assess the fuzzy predicates [6]. These 

fuzzy predicates permit to have a range of answers (each 

one with a membership degree under shapes of linguistic 

expressions) in order to offer to the user all intermediate 

variations between the completely satisfactory answers 

and those completely dissatisfactory. 

Two possible solutions to implement a fuzzy relation 

database (FRDMS) [1], [4] :(1) develop a specific Fuzzy 

DBMS to evaluate the queries written in FSQL, by 

analogy with the strategy put in work in the usual DBMS, 

but the development cost would risk to be prohibitive, (2) 

use the capacities of the commercial DBMS (in particular 

their mechanisms of optimization) while attaching a 

software layer that allows to support the fuzzy concept. 

The last solution, characterized by its easiness realization, 

consists in cooperating the FSQL server and the DBMS. 

This solution has been concerned with the problem of how 

query interfaces to conventional databases with crisp data 

can be extended such that a flexible explanation of queries 

is possible-in particular, with the motivation to advise 

alternatives which are close to match the criteria in case 

that a query fails completely. 

Lecture Notes on Information Theory Vol. 2, No. 2, June 2014

177©2014 Engineering and Technology Publishing
doi: 10.12720/lnit.2.2.177-185

mailto:saad.saad@alexu.edu.eg
mailto:tamer.fouad@aiet.edu.eg
mailto:yasserfakhry@hotmail.com


 

 

FSQL is an add-on to traditional relational databases 

that acts as a proxy between the user and the database [6]-

[9]. Since FSQL connects with the underlying database 

only on the basis of standard SQL, no alterations to the 

database system or the data model have to be made, which 

lets easy integration into existing applications. Fuzzy 

upgrading of SQL queries has advantages in cases when 

the user cannot unambiguously define selection criteria or 

when the user wants to examine data that almost meet the 

given criteria.  

The concept of a type-2 fuzzy set was announced as an 

extension of the concept of an ordinary fuzzy set. Type-2 

fuzzy sets allow us to handle linguistic uncertainties or 

vagueness, as typified by the adage "words can mean 

different things to different people"[10]. A fuzzy relation 

of higher order (e.g., type-2) has been regarded as one 

way to increase the fuzziness of a relation and hence raises 

ability to handle inexact information in a logically correct 

manner. Type-2 fuzzy set is characterized by a fuzzy 

membership function, i.e., the membership grade for each 

element of this set is a fuzzy set in [0,1], unlike a type-1 

set where the membership grade is a crisp number in [0,1]. 

Such sets can be used in situations where there is 

uncertainty about the membership grades themselves, e.g., 

an uncertainty in the shape of the membership function or 

in some of its parameters [11]. 

A. Paper Motivation and Contribution 

The objective is to provide users with new querying 

capabilities based on conditions that involve preferences 

and describe more or less acceptable items, thus defining 

flexible queries. Since the problem is no longer to decide 

whether an element satisfies (or not) a condition but rather 

the extent to which it satisfies this condition, one of the 

advantages lies in the "natural" ordering of the answers 

(decision) that allows for calibration if chosen. 

In this paper, we provide the key ideas how the 

functionality of FSQL can be extended such that a flexible 

interpretation of conditions like “is at least”, “is at most” 

and" is about" can be maintained. We extend the work of J. 

Mishra [9] to enhance dealing with fuzzy linguistic values 

on crisp database by using type-2 fuzzy logic, which can 

be very useful to handle high levels of uncertainties 

properly specially with the large size of databases. This 

language grants new concepts such higher order fuzzy 

attributes. A further important feature of the suggested 

system is the possibility of weighting both predicates and 

operands of algebraic operators so as to better fit user 

preferences/requirements and to capture more meaning of 

the data with suitable interpretations for the type-2 fuzzy 

membership functions.  

Besides this introduction, this paper includes four 

sections. Section 2 presents the architectures already used 

for the flexible querying modeling. Section 3 presents our 

new architecture of the fuzzy query. Section 4 makes an 

evaluation of this work and Section 5 gives conclusion 

and some future perspectives of it. 

II.   LITERATURE OVERVIEW 

FSQL area of research is not new one but there are still 

many opportunities for the enhancement of existing 

approaches and for producing new approaches. Although 

there are some variations according to the discriminations 

of different implementations, the answer to a fuzzy query 

sentence is generally a list of records, ordered by the 

degree of matching. Brief analysis of these proposals and 

their variations can be found in [1], [12]. The most 

advantages of these proposals that it lead to develop many 

techniques to handle vague and imperfect data to get more 

accuracy. In the contrary of that, most of them use the 

fuzziness in database through fuzzy database which 

require some alterations in database structure and this 

involves new entities like fuzzy conditions, fuzzy 

comparators, fuzzy constants, fuzzy constraints, fuzzy 

thresholds, linguistic labels and so on. Moreover, these 

studies are limited to just some specific applications and 

not stranded on theories of fuzzy database query 

languages. 

Research work on emerging a flexible natural language 

interface for relational crisp databases has practiced 

growth at a very high rate. This has led to incessant 

research on natural language interfaces and query 

execution related issues. Most existing natural language 

interface to relational databases (NLI2DBs) are quit stiff 

in interpreting natural language queries. They just look for 

keywords in the sentence or using some patterns in 

analyzing the user's input. Such approaches cannot deal 

with questions in random formats. For instance, the 

authors in [13] proposed architecture for fuzzy querying 

along with an experimental implementation of the same. 

The implementation is using some patterns that assist the 

lexical analysis of fuzzy terms and parsing the fuzzy query 

individually. Fuzzy query is interpreted by the parser and 

the resulting semantic actions are carried out on MySQL 

database. However, most NLI2DBs are domain-dependent, 

as they need predefined knowledge of the working domain 

in building templates or semantics rules.   

In the context of fuzzy query language, many 

researchers proposed extension to relational algebra in 

order to develop a fuzzy SQL that offers the means for 

performing queries with some uncertain concepts. For 

example, the fuzzy query approach based on the fuzzy 

Generalized Logical Condition (GLC) was presented [7]. 

This GLC enables matching fuzzy and classical 

constraints in the same where clause and selects only 

records that have the query satisfaction greater than zero 

(true). It is also possible to use additional filtering 

functions to choose suitable number of records or to set 

the threshold value of the query command interface. 

Authors in [6] and [12] provided new technique to 

improve the fuzzy GLC for the where part of SQL in 

classical relational crisp databases. In this way, fuzzy 

queries are accessing relational databases in the same way 

as with SQL. In [4], the authors discussed how 'IS' 

predicates in the flexible query can be evaluated in the 

presence of data that is modeled by fuzzy sets.     

The work done by A. Branco et al. [14] has shown a 

methodology that automatically creates fuzzy queries 

from a training data set. The fuzzy queries are translated 
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from a set of fuzzy weighted classifier rules. A pruning 

procedure to simplify the fuzzy rule base and the resulting 

set of fuzzy queries was also proposed. The fuzzy queries 

are able to retrieve an ordered list of the records according 

to the fuzzy rule based model learned by the fuzzy 

classifier. The precision and recall analysis of the selected 

records of the fuzzy query allow the user to select an 

optimal threshold for other data.  

In [15] the authors presented a new approach for fuzzy 

query processing based on automatic clustering techniques. 

Their proposed algorithm does not need to define the 

number of clusters of the data in advance, which makes it 

more convenient and more flexible to cluster data. Other 

researchers in [16] presented a new aggregation operator 

and the corresponding algorithm to evaluate the fuzzy 

query. The main idea is to dynamically define sets of 

linguistic labels on limited attribute domains, determined 

by previous fuzzy selections. This operator provided an 

accurate model for the discussed vague expression, with 

respect to query semantic. 

An important work presented by J. Mishra [9] where 

the aim is to develop a formula which will first generate 

the SQL statement of a given fuzzy query. Next the 

generated SQL is supplied to the database to get the 

resultant table. In this architecture, the author has defined 

an algorithm to find the membership value for each tuple 

on the relation based on the fuzzy attribute on which fuzzy 

query made. Next decision maker will supply a threshold 

value based on which corresponding SQL of a given fuzzy 

query will be generated. In this case, type-1 fuzzy logic is 

used to model attributes (i.e. membership value for each 

tuple is crisp number in [0, 1]).   

In general, management of SQL using traditional type-

1 fuzzy sets to build flexible query cannot handle high 

levels of uncertainties appropriately particularly with the 

huge size of the databases and the vast amount of data that 

is usually largely similar and difficult to deal with it. In 

this paper, a revised system has been developed to harness 

the advantages of using type-2 fuzzy set inside SQL to 

retrieve records with high levels of uncertainties. The 

investigational appraisal shows that this type-2 fuzzy 

query system can yield good results on real world 

database, demonstrating its effectiveness towards solving 

the problem facing type-1 fuzzy query to significantly 

improve the robustness of database query operations. 

III. METHODOLOGY 

The suggested prototype is constructed by the addition 

of a layer around a classic DBMS as shown in Fig. 1. The 

translation mechanism generates a procedural evaluation 

program and determines the expressions that are used to 

compute the membership degrees and separate if 

necessary the tuples whose degree is lower to the fuzzy 

threshold. Furthermore, a meta-base named type-2 fuzzy 

meta-knowledge is defined that is formed by a table that 

extend the DBMS dictionary or catalog in order to store 

all necessary information to describe linguistic hedges and 

to manipulate membership values.  

The present framework fully exploit fuzzy logic for: (1) 

modeling the similarity of the case attributes with respect 

to different approximate concepts; (2) modeling the 

retrieval conditions as well as the acceptability of the 

retrieved cases. The system deals with fuzzy attributes 

type 1 (FTYPE1): these are attributes with "precise data" 

classic or crisp (traditional, with no imprecision). 

However, they can have linguistic labels defined over 

them, which allow us to make the query conditions for 

these attributes more flexible. The use of flexible 

predicates and linguistic quantifiers interpreted in the 

framework of the type-2 fuzzy set theory is advocated for 

defining a query language. 

 

Figure 1.  Proposed architecture of fuzzy SQL. 

This architecture can effectively reduce complexity of 

processing data and maintaining a database by way of 

utilizing extra translation mechanism on the top of 

existing DBMS. It also can balance the variety of data and 

system performance through embedding more than type-2 

fuzzy membership functions. By applying type-2 fuzzy 

logic and SQL to the evaluation of records, we 

significantly improve query robustness (i.e. we may found 

more suitable candidate records that are fit to the query 

operations). Complex multi-predicate queries can be 

formed by means of logical connectives, whose semantics 

is parameterized in order to adjust to specific scenarios. 

The following subsections discuss each component of the 

proposed architecture in detail.     

A. Natural Query Interface 

The interface actually is the first thing a user should 

encounter. Then the user gets started with the system by 

entering a query in his/her natural language. Many times 

when querying a database; users do not wish to define the 

precise limits of acceptance or rejection for a condition, 

that is, they want to be allowed some imprecision in the 

query. In other words, the satisfaction of a condition is a 

matter of degree and a flexible query should provide 

answers that would have had an empty response on a 
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classical relational SQL-type language. Moreover, it cans 

easily rank-order the best answers, rather than showing a 

long list of answers [17]. 

Natural language consists of fundamental terms called 

“Linguistic variable” and “Linguistic values”. The 

purpose of using the linguistic variable is to provide a 

means of approximate characterization of phenomena that 

is not defined properly. In our work user must select the 

attribute (Linguistic variable) and its (linguistic terms or 

labels) like what is the employees whose have a big salary 

and small age. In our case, the linguistic terms for any 

attribute are determined through the number of attribute's 

clusters that is defined by the user. To avoid typing errors, 

the wanted scenario for the user is to determine what kind 

of data he wants to select by linguistic expressions and 

degrees of truth.  

In formal, the linguistic variable is a 

quadruple  MCVEV ,),(, , where V is the name of the 

linguistic variable, ni
i

eVE ,...,1},{)(   represents a 

set of linguistic values for the V and is ordered 

set  jijeie  ,  having an odd cardinality, while C 

symbolizes the crisp referential domain of the V, and M is 

a mapping )()( CVE   that maps a fuzzy set on C for 

each linguistic values of V. Thus, an order relation   

on )(VE is easy to define, for example little   

intermediate big. So  is a semantic order relation [18].  

These linguistic variables (quantifiers) are represented 

as type-2 fuzzy set. This will improve the performance of 

crisp selection of traditional SQL where record would not 

be selected even if it is extremely close to the intent of the 

query. This is the penalty paid for using crisp logic in 

selection criteria.  Herein, the user determines the shape of 

fuzzy set, lower limit of fuzzy set and value of full query 

satisfaction (fuzzy degree). The lower limit becomes part 

of the WHERE clause. This clause access the database 

and selects records that have Query Index (QI) >0. The QI 

is used to indicate how the selected record satisfies a 

query criterion and determined through query satisfaction. 

The QI has values from the [0,1] interval with the 

following meaning: 0-record does not satisfy a query, 1-

record fully satisfies the query, interval (0,1)-record 

partially satisfies a query with the distance to the full 

query satisfaction.  In the QI calculation step, the 

differences between fuzzy set shapes become important.  

Conditions in queries contain these basic comparison 

operators: >, <, and = when numerical attributes in query 

conditions are used. In our case, these crisp comparison 

operators are adapted for fuzzy queries (linguistic 

quantifiers) in the following way: operator > was 

improved with fuzzy set high value, operator < was 

improved with fuzzy set small value and operator = was 

improved with fuzzy set about value. Furthermore, 

proportional quantifiers such as "most" can be represented 

by fuzzy subsets of the unit interval. According to the 

above analysis, three types of linguistic terms in this 

research are supported: high value, small value and about 

value of attribute. The WHERE clause contains one 

attribute or more attributes that are connected with fuzzy 

aggregation operators. These connectors are able to 

compute a global satisfaction degree starting from the 

satisfaction degrees of each vague selection criterion with 

respect a certain model of the fuzzy connections. Usually, 

the minimum and maximum functions stand for fuzzy 

conjunctive and disjunctive connections; the complement 

stands for the fuzzy negation. But there are many other 

propositions in the literature for defining aggregation 

connections [19].          

In formal, a query is a set of 

pairs   nn vfvfq ,1,1 ,... such that each if is an attribute 

(field) and each iv  is either (1) a fuzzy linguistic term 

defined over )( ifRange with type-2 membership function 

such that  1,0)( ifRange or (2) an expression of the 

kind "," ixiop  such that )( ifRangeix  and iop  is a 

binary operator (either crisp or fuzzy) defined over if  

[16]. For instance, if the fuzzy terms young and old are 

defined over the attribute age, we could be interested in 

the fuzzy expression: 
 old)veryNOTANDOR(oldyoungage,  

let us indicate ),( ivifP the fuzzy predicate related to the 

assignment of a condition iv  to attribute (linguistic 

values are specified). For example  youngageP ,  is true 

with degree )(xyoung  if young is the membership 

function of the fuzzy set young defined over age and the 

attribute age assumes values x. Notice that in our 

framework, each attribute in the database does not have 

any fuzzy specification in its structure; fuzzy information 

is used only at the query level to retrieve stored cases on 

the basis of an approximate (fuzzy) match. 

 The retrieval condition induced by q is the fuzzy 

should be performed through OR  connective. Predicate 

 ivifPn
iqR ,1   where n

i 1  is a Boolean expression 

involving all the predicates P, and n is the number of 

attribute specified in the query. If for some attributes we 

ask to combine similarities in such a way that a 0-

similarity fully contributes to non-equivalence, then a t-

norm combination should be used, resulting in a predicate 

composition through the AND   connective. If on the 

contrary, a 0-similarity does not contribute at all to non-

equivalence, then a t-conorm should be the choice and the 

predicate composition should be performed through   

connective. 

Given a set of tuples c, a query case q and the retrieval 

condition R, the matching degree of c to q is 

   cqc R , . So given a database DB, and a fuzzy 

threshold λ, the retrieval set is the set 

   )(/ ),,( ,qcDBcDBqS ii . The problem of finding 

the stored cases that best match the query, is then reduced 

to that of finding the set of cases satisfying, to an 

acceptable degree of match (represented by λ), the 

conditions specified in the query itself.  In particular, we 

can consider the following syntax: 

SELECT (λ) A FROM R WHERE cf  
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which meaning is that a set of tuples with attribute set A, 

from relation set R, satisfying the condition 
cf  with 

degree μ ≥ λ is returned. If a fuzzy operator θ is defined 

on attribute f, the expression  vf  can be fuzzified by 

transforming the crisp operator = into θ. 

B. Clustering  

The first step after identifying variables through the 

interface (choosing the attributes to be queried and 

number of attribute's linguistic terms in each attribute) is 

to semantically cluster the attribute' values according to 

required linguistic labels. Clustering is a mathematical 

tool that attempts to discover structures or certain patterns 

in a data set, where the objects inside each cluster show a 

certain degree of similarity [20]. The output from a 

clustering algorithm is basically a statistical description of 

the cluster centroids with the number of components in 

each cluster. The k-means algorithm is well known for its 

efficiency in clustering large data sets [21].   

Given a set of numeric attribute 1...n)F,iF(fi  , the k-

means algorithm searches for a partition of F into k 

clusters that minimizes the within groups sum of squared 

errors. This process is often formulated as the following 

mathematical problem P [22]: 

Minimize ),Q(fdwP(W,Q) li

k

1l

n

1i i,l  
  

Subject to 


k

l liw
1 , 1 kln, 1i1    1,0, liw      (1) 

where W an KN  partition matrix,  KQQQ ,...1  is a set of 

objects in the same object domain, and .)(.,d  is the 

squared Euclidean distance between two objects. The 

method can be very useful to develop the initial 

metaknowledge base, containing type-2 fuzzy definitions 

of vague terms in the application domain, but ever later, 

to maintain the actuality of these definitions with the 

instantly database content.     

C. Parsing 

In this step, type-2 fuzzy interpreter should be designed 

on the frame of given RDBMS using lexical and 

syntactical analysis of queries. The interpreter transforms 

the fuzzy SQL into a native SQL. Based on type-2 fuzzy 

attribute, the interpreter fetches the domain set of that 

attribute from the database and then finds the membership 

value for fuzzy equality of each domain value of the fuzzy 

attribute. If the query has more than one fuzzy attributes 

then in similar way it finds the membership value for 

equality for other fuzzy attribute. Finally it takes fuzzy 

intersection or union of all membership values depending 

on connector type between attributes (and/or) to get the 

membership value of each tuple of the relation.   

In our case, The FSQL server uses fuzzy 

metaknowledge base to model the different types of type-

2 fuzzy attributes. This additional table stores attributes 

which admit fuzzy treatment and different information 

related to fuzzification of the different attributes such as 

linguistic variables, type-2 membership values (T2MF) 

and description of atomic values. Using predefined 

parameters of membership function and attribute crisp 

domain limits; the algorithm can obtain the definition for 

linguistic values on a database attribute. A review of 

several categories of linguistically terms with vague 

meaning, their fuzzy modeling and specific operation are 

presented in [19].   

 

Figure 2. Three dimensional T2MF. 

Fig. 2 illustrates all terminology of type-2 fuzzy set 

(T2FS). Two important concepts distinguish T2MF from 

T1MF [10], [11], [23]: secondary MF and FOU. The 

secondary MF is a vertical slice of T2MF,  x,uh
A

, at each 

value of xx ` ; i.e. the function
xA

Juuxh ),`( . The 

amplitude of the secondary MF is called the secondary 

grade. The domain ]10[ ,J x   of the secondary MF is called 

the primary membership of x, and u is the primary grade. 

The FOU is a bounded uncertain region in the primary 

memberships of a T2FS, and is the union of all primary 

memberships. An upper and lower MF are two T1MF that 

are bounds for FOU denoted by (x)h
A

and 

Xx,xhA    )( if ]1,0[ , 1 ),`(  xA
JuXxuxh , the 

secondary MFs are interval sets, which reflect a uniform 

uncertainty at the primary memberships of x. Because all 

the secondary grades are unity, an IT2FS can be denoted 

by the interval of upper and lower MFs, i.e. 

)](),([)( xhxhxh
AAA

 . The membership grade )(xh
A

 of 

x in an T2FS is a T1FS in [0,1]. A useful theoretical 

overview about T2FS and fuzzy operator can be found in 

[23]. In this work, we utilize trapezoidal MF to describe 

all variables that are defined as:  

           

   

   














otherwise 

ca

caax

x
A

                          0,

axc    if,/x-a

 cxc -  if                               1,

-cxa-  if   ,/

)(             (2) 

 

   

   














otherwise 

db

dbbx

x
A

                          0,

bxd    if,/x-b

 dxd -  if                               1,

-dxb-  if   ,/

)(            (3) 

where bdandac  00  The range of )](),([ xx
AA

  

specify the bounds of FOU according to the uncertainty 

of the model. A greater uncertainty will result in a larger 

spread of the FOU and increase the range 
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of )](),([ xx
AA

 . Herein, we use the following formulas 

[23].  

),0[*)(,*)(  kkxkx uAuA
       (4) 

uk is uncertainty factor, the larger uk  the larger 

uncertainty,  and  are mean and variance of the 

attribute respectively. Here, we depend on category's 

cluster center to find parameters for building membership 

function. These parameters are obtained through fuzzy 

metaknowledge base where there is more than one type of 

curves and the selection of the membership function type 

depends on work requirements.  

The computation complexity of general type-2 fuzzy 

logic systems (T2FLSs) is very high, which makes them 

very difficult to be deployed into practical applications; 

hence, only an interval T2FLS (a special case of general 

type-2 FLS) is today the most widely used T2FLS [24], 

[25]. Once all crisp attribute' values have been fuzzified 

into their respective linguistic values, the inference 

engine will access the fuzzy rule base of the fuzzy system 

to derive linguistic values for the intermediate as well as 

the output linguistic variables. The two main steps in the 

inference process are aggregation and composition. 

Aggregation is the process of computing the values of the 

IF (antecedent) part of the rules while composition is the 

process of computing the values of the THEN 

(conclusion) part of the rules.  

We build collection of some IF–THEN rules which 

reflect the semantic of fuzzy query in the first stage and 

provide the behavior of process to achieve the result. The 

inference engine combines rules and gives a mapping 

from input type-2 fuzzy sets to output type-2 fuzzy sets 

using fuzzy rule base. It is necessary to compute the 

join  (union) and the meet   (intersections). In formal, 

if A and B are two type-2 fuzzy sets of the universe u and 

)(xA  is the grade of membership element x in the set A, 

then the fuzzy union   and fuzzy  intersection are 

defined as [3]: 


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Regarding new aggregation operator like "within" 

where the fuzzy model for the conjunction is defined as:   

   }:)})(),(min{,{( / uxxxxBAQI BBA

Within

          (7) 

in which )(/ xBA  is the satisfaction degree of the first 

criterion relative to second one. Other types of fuzzy 

operators could be added in the future to catch other 

linguistic expressions.   

After that, the Karnik-Mendel (KM) algorithm has been 

employed for centroid type-reduction. The type-reducer 

generates type-1 fuzzy set outputs which are then 

converted into a numeric output through running the 

defuzzifier. The defuzzified output of an interval singleton 

type-2 FLS is computed as [26]:   
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where M presents the number of rules. A perfect FLS 

should have ;f(x) 0  where 0 is the desired output but, 

generally, there exist errors between the desired output 

and actual output. We, therefore, need a design procedure 

for tuning the parameters of the FLS in order to minimize 

such errors. Herein, the satisfaction degree of each 

linguistic value is computed for each table row, and the 

min or max function is used to implement the fuzzy 

connection between them to compute the global criterion 

satisfaction degree of each tuple. Once this phase is 

finished, the DBMS manages the crisp data translated by 

the FSQL Server with a transparent way. 

After the transformation of natural language query into 

SQL, the application program having first established a 

connection to the relational database, will now transfers 

the SQL query to the RDBMS. The interface here can be 

viewed as a reverse automated machine that displays the 

output of the search process. This makes the entire 

database search a cycle-like process. As a result of fuzzy 

classification by using conventional SQL queries and 

type-2 fuzzy interpreter, fuzzy classified data is presented. 

The crucial difference between fuzzy queries and exact 

queries is the number of records brought into the memory. 

A large number of tuples will be selected by fuzzy 

condition in comparison to the crisp one. 

In a vague query, the selection criterion is no longer 

Boolean, so it can be more or less satisfied by the database 

tuples. Therefore, for each tuple, a satisfaction degree is 

estimated, which stands for the measure of its 

compatibility with the vague criterion. Including vague 

criteria in a database query may have the possibility to 

refine the results, assigning to each tuple the 

corresponding degree of criteria satisfaction. Note that, the 

membership function in a fuzzy set is not a matter of true 

or false but a matter of degree. This approach decreases 

the amount of transferred data across nets and calculation 

of QIs is not significant burden for client computers. 

IV. EXPERIMENTAL RESULTS 

In this section we present evaluation results showing 

the efficiency and effectiveness of the proposed system in 

answering imprecise queries. We used two real-life 

databases: (1) the car database Yahoo Autos 

(http://autos.yahoo.com) and (2) the Census Dataset from 

UCI Machine Learning Repository 

Lecture Notes on Information Theory Vol. 2, No. 2, June 2014

182©2014 Engineering and Technology Publishing



 

 

(http://www.ics.uci.edu/learn/MLRepository.html), to 

evaluate our system. In conventional DBMS, the problem 

of query evaluation remains somewhat open since given a 

query; in general the optimal evaluation way cannot be 

reached. For fuzzy queries the process becomes more 

complex for two reasons: (i) the available access paths 

cannot be directly used, and (ii) a larger number of tuples 

is selected by fuzzy conditions with respect to Boolean 

ones. In the experiments, we select the probing queries 

from a set of spanning queries i.e. queries which together 

cover all the tuples stored in the database. 

The evaluation focuses on two aspects: (1) the accuracy 

of retrieval records in terms of precision rate (the fraction 

of retrieved cases that are relevant from user queries); and 

(2) the accuracy of retrieval records in terms of recall rate 

(is the fraction of relevant cases that are retrieved). Both 

precision and recall are therefore based on an 

understanding and measure of relevance. During 

evaluation, databases with different sizes are generated for 

the series of experiments from the original database. The 

experiments were conducted by testing queries under 

different fuzzy threshold levels and different number of 

records including 500, 1000, 2000 and 5000 records. In 

general, the database querying access is usually limited 

because the difficulty to realize and express precise 

criteria to locate the information. The experimental results 

are obtained by averaging from 5 independent trials. 

 

Figure. 3. Comparative results. 

 

Figure. 4. Precision rates for different database sizes with high fuzzy 
level. 

 

Figure. 5. Precision rates for different database sizes with medium fuzzy 
level. 

The first set of experiments were conducted to compare 

between type-1 and type-2 fuzzy based vague querying for 

each fuzzy threshold level including low, medium and 

high. This procedure was repeated for database sizes and 

an average is calculated. The x-axis corresponds to the 

thresholds level and the y-axis corresponds to retrieval 

accuracy values. The values plotted are precision as 

shown in Fig. 3. The results reveal that the use of T2FL 

generates a further precision rate improvement of 1-2% 

for low level compare to T1FL. Furthermore, this 

improvement increases for medium and high fuzzy 

threshold. This improvement comes from the ability of 

T2FL to deal with higher level of uncertainty than regular 

fuzzy logic, which is heavily used in the previous works. 

Validity of the results is confirmed by test group 2, 

aimed at testing retrieval accuracy when they are applied 

to the various database sizes with different fuzzy threshold. 

Again, precision rates are growing by using T2FL-based 

retrieval for both high and medium fuzzy levels in all 

database sizes as outlined in Fig. 4 and Fig. 5, while the 

actual precision rates for T2FL are convergent to the 

T1FL for low fuzzy level as illustrated in Fig. 6. These 

results support the claims made about the ability of the 

existing T2FL –based system to deal effectively with 

vague querying. 
  

 

Figure. 6. Precision rates for different database sizes with low fuzzy 
level. 

Fig. 7 summarizes recall rates for different database 

sizes with different fuzzy levels. As we can see, the 

proposed system performs well for retrieving correct 

answers for vague query depending on fuzzy threshold 

values.   

 

Figure. 7. Recall rates for different database sizes with different fuzzy 
level. 

V.   CONCLUSION 

This paper examines situations when database querying 

process by the two valued realization of Boolean algebra 

is not adequate and offers solution based on type-2 fuzzy 

logic because the fuzzy logic is an approach for 

computing based on "degrees of truth" rather than the 
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usual "true or false" logic. The suggested FSQL language 

allows for dealing within a common framework with 

several aspects relevant to similarity query processing as 

well as with the inherent imprecision that characterizes 

data, user requests, and query results.  

Here we only address the problematic of building a 

human-oriented interface capable of handling flexible 

queries, since our focus is on the representation of 

attributes by means of fuzzy sets to allow pseudo-natural 

language queries. The main advantages of our work are: 

(1) the existing implemented systems do not have to be 

modified; (2) the fuzzy attributes are built from the raw 

data; (3) the dialog with the system is done in a language 

very close to natural language; (4) the answers are given 

in a linguistic form, as well as a numeric form, which 

helps the user to better understand the results obtained; 

and (5) the interface can be used for other relational 

databases, after an initial preprocessing to define the fuzzy 

components with eventual slight changes in the grammar.  

We believe that the research on the strict relationships 

between retrieval from database and fuzzy logic will 

eventually lead to the constructions of flexible reasoning 

systems, able to deal with problems of greater and greater 

complexity. As futures perspectives of this work, we 

mention the automatic mapping of existing relational DB 

to FRDB. This point is theoretically done but not 

implemented yet, so we think that it will contribute to 

make easier the use of the FRDB in real applications. 
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