
Parallelization of AES Algorithm Using OpenMP

S. S. Navalgund, Akshay Desai, Krishna Ankalgi, and Harish Yamanur
Department of Electronics and Communication Engineering, SDMCET, Dharwad, Karnataka, India

Email: siddunavalgund@yahoo.com, {akshaysd08, krishna.ankalgi, harishyamanur32}@gmail.com

Abstract—Advanced Encryption Standard (AES), a Federal

Information Processing Standard (FIPS), is an approved

cryptographic algorithm that can be used to protect

electronic data. AES is a complex algorithm that requires

large number of mathematical computations to be done. A

sequential implementation would require a considerable

amount of execution time. This may not be feasible for some

applications that require faster rates of encryption and

decryption to match the required data flow. This paper

proposes an optimised parallel architecture of AES

algorithm at both data and control level, suitable to be

implemented in a multicore environment. The AES

algorithm has been implemented in C language and is

parallelised using OpenMP standard. The performance

analysis is done using Intel VTuneTM Amplifier XE 2013.

The proposed parallel design exhibits improved

performance over the sequential approach which addresses

several applications that have a time constraint.

Index Terms—AES, encryption, decryption, parallelization,

multicore, OpenMP, VTune Amplifier

I. INTRODUCTION

The importance of cryptography applied to security in

electronic data transactions has acquired an essential

relevance during the last few years. Each day millions of

users generate and interchange large volumes of

information in various fields, such as financial and legal

files, bank services via Internet and e-commerce

transactions. These and other examples of applications

deserve a special treatment from the security point of

view, not only in the transport of such information but

also in its storage.

Advanced Encryption Standard (AES), also known as

Rijndael, is a block cipher adopted as an encryption

standard by the US government. This cipher was

developed by two Belgian cryptographers, Vincent

Rijmen and Joan Daemen and submitted to the AES

selection process under the name “Rijndael”, a

portmanteau comprised of the names of the inventors [1].

The AES algorithm is a symmetric block cipher that can

encrypt and decrypt information thus providing a high

level of security to the electronic data.

In addition to security level, the cipher speed is the

most important feature of cryptographic algorithms. In

this paper we propose a software approach based on

transformations of a source code written in C language

representing the sequential AES algorithm. The main

contribution of this paper is to present the parallelization

process of the AES algorithm along with the description

of exploited parallelization methods and speed-up

measurements.

The paper is organized as follows; the AES algorithm

is briefly reviewed, a brief description of the

parallelization tools that were utilized is given, which is

followed by a brief explanation of the parallelization

process of the AES algorithm. Lastly the experimental

results regarding the application efficiency of the parallel

algorithm are presented.

II. DESCRIPTION OF AES ALGORITHM

AES is based on the principle known as Substitution

Permutation network (SP-network) which means there

will be a series of linked mathematical operations in the

block cipher algorithm [2].AES encrypts a data block of

128-bits which is fixed with three different key sizes

128,192,256 bits. The operations are based on Rijndael

algorithm. The input of AES algorithm is 128-bit or 16

byte data which can be specified as a block. The basic

unit of processing in the AES algorithm is a byte. All

byte values in the AES algorithm will be presented as the

concatenation of its individual bit values (0 or 1) between

the braces in the order (b7, b6, b5, b4, b3, b2, b1, b0).

These bytes are interpreted as finite field elements using a

polynomial representation as follows

b7X7+ b6X6+ b5X5+ b4X4+ b3X3+ b2X2+ b1X1+b0 (1)

Internally in AES algorithm operations are performed

on a two-dimensional array of bytes called the state. The

state consists of four rows of bytes, each containing Nb

bytes, where Nb is the block length divided by 32 (4 for

128-bit key, 6 for 192-bit key, 8 for 256-bit key).

Likewise the key length and number of rounds (iterations)

differ from key to key as shown in Table I [3].

The AES cipher is specified as a number of repetitions

of transformation rounds that convert the input plain text

into the final output of cipher text. Each round consists of

several processing steps, including one that depends on

the cipher key. A set of reverse rounds are applied to

transform cipher text back into the original plain text

using the same cipher key. AES does not use a Feistel

network in the sense that the process of decryption

slightly changes with respect to encryption. Fig. 1

represents the sequential flow of the algorithm [3].

High-level description of the algorithm is as follows,

A. Key Expansion

Round keys are derived from the cipher key using

Rijndael key schedule

Lecture Notes on Information Theory Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing 144
doi: 10.12720/lnit.1.4.144-147

Manuscript received June 10, 2013; revised August 28, 2013.

B. Initial Round

Add Round Key: In the add round key step the 128 bit

data is XORed with the sub key of the current round

using the key expansion operation. The add round key is

used in two different places one during the start that is

when round r=0 and then during the other rounds that is

when 1 < round < Nr, where Nr is the maximum number

of rounds.

C. Rounds

 Substitute Bytes: A non-linear substitution step

where each byte is replaced with another

according to a lookup table.

 Shift Rows: A transposition step where each row

of the state is shifted cyclically a certain number

of steps.

 Mix Columns: A mixing operation which operates

on the columns of the state, combining the four

bytes in each column.

 Add Round Key

D. Final Round

 Substitute Bytes

 Shift Rows

 Add Round Key

Figure 1. The sequential flow of AES algorithm.

TABLE I. DIFFERENT KEYS AND ITS ATTRIBUTES

Algorithm
Key Length

(Nk words)

Block Size

(Nb Words)

No.of Rounds

(Nr)

AES-128 4 4 10

AES-192 6 4 12

AES-256 8 4 14

III. PARALLELIZATION TOOLS

In order to parallelize the AES algorithm we have used

OpenMP API directives to overcome data dependency

and synchronization problems. Intel VTune
TM

 Amplifier

XE 2013 has been used to recognize that part of the code

which consumes maximum computational time and then

optimize it.

A. OpenMP API

The OpenMP Application Program Interface supports

multi-platform shared memory parallel programming in

C/C++ and Fortran on all architectures including Unix

and Windows NT platforms[4]. OpenMP is a collection

of compiler directives, library routines and environment

variables that can be used to specify shared memory

parallelism. OpenMP directives extend a sequential

programming language with Single Program Multiple

Data constructs, work-sharing constructs, synchronization

constructs and make possible to operate with shared data

and private data. An OpenMP program begins execution

as a single task called master thread. When a parallel

region is encountered, the master thread creates a team of

threads. The statements within the parallel region are

executed in parallel by each thread in the team[5]. At the

end of the parallel region, the threads of the team are

synchronized. Then again only the master thread

continues execution until the next parallel region will be

encountered. It is necessary to find remedy for all

problems connected with programming restrictions on

parallel processing to build a valid parallel code

B. VTune TM Amplifier XE 2013

The dynamic computation characteristics of the

benchmarks are profiled and VTune TM Amplifier XE

2013 from INTEL® has been utilized as the performance

analyzer to identify the hotspots[6]. VTune analyzes the

software performance on IA-32 and IA-64 based

machines. It collects performance data on applications

running on the host system, organizes and displays the

data in an interactive way. VTune’s call graph view

provides a tree structure to show the call relationship

among all functions along with their execution time. This

would help us identify the “hotspot” functions and

percentage of the hotspot functions occupying the total

execution time of each benchmark.

IV. PARALLELIZATION OF AES USING OPENMP

In cryptography, the simplest mode of operation used

with a block cipher to implement the complete encryption

algorithm is the Electronic Code Book (ECB) mode [7].

The entire plain text is divided into blocks of fixed length

which can be processed independently. Each block of

plaintext is encrypted with the same key as a unit and

turned into cipher text block.

The ECB mode of encryption is followed to implement

the AES algorithm. Fig. 2 represents the ECB mode of

encryption for AES algorithm. Blocks of length 128-bits

are formed from the given plain text. The ECB mode of

encryption supports a parallel architecture as the

Lecture Notes on Information Theory Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing 145

individual blocks of plain text can be processed

independently. The decryption of the cipher text can also

be done in a similar way.

Figure 2. ECB mode of encryption for AES algorithm.

The sequential algorithm can be modified to take

advantage of the multiprocessing units. According to the

parallel computations paradigms[8], the independent

parts of the algorithms must be identified and then

prepared to work in separate threads. Initially the AES

algorithm is divided into parallelizable and un-

parallelizable parts. The parallelized portion and un-

parallelizable portion are joined using the fork-join model.

The data input of the parallelization process is the well

optimized sequential AES algorithm. The process of the

AES algorithm parallelization can be divided into the

following stages:

 Finding the most time-consuming functions of the

AES algorithm using VTune Amplifier XE 2013.

 Making preliminary transformations of the most

time consuming loops.

 Data dependences analysis of the most time

consuming loops

 Constructing parallel loops in accordance with the

OpenMP API

 Verification of a parallelized source code.

The result of the parallelization process is a

parallelized AES algorithm which shows improved

performance over a sequential implementation.

V. RESULTS

TABLE II. COMPARISON OF EXECUTION TIMES OF SEQUENTIAL AND

PARALLELIZED CODE

File Size
Execution Time

Sequential Code Parallelized Code

5 KB 0.045 sec 0.025 sec

10 KB 0.072 sec 0.058 sec

20 KB 0.128 sec 0.104 sec

40 KB 0.245 sec 0.211 sec

50 KB 0.334 sec 0.279 sec

100 KB 0.770 sec 0.698 sec

200 KB 1.343 sec 1.002 sec

400 KB 2.461 sec 1.867 sec

800 KB 5.439 sec 4.238 sec

1 MB 6.799 sec 5.010 sec

2 MB 13.649 sec 11.483 sec

5 MB 32.397 sec 27.380 sec

The AES algorithm has been successfully parallelized

by using OpenMP API directives and is optimized using

VTuneTM Amplifier XE 2013. The specifications of the

system used are: Intel X64 architecture, 2.3GHz CPU.

Table II specifies the execution times of sequential and

parallelized code for different file sizes. It can be inferred

from the table that as the file size increases the

parallelized code offers better performance. The

execution time of sequential code is greater than the

parallelized code in all the cases. When the file size is

less than 5KB the difference is not distinguishable.

Another analysis is done by changing the number of

available threads for encrypting the same file of size 5KB.

The specifications are shown in Table III.

TABLE III. EXECUTION TIME OF PARALLELIZED CODE BASED ON

NUMBER OF THREADS

For a file of size 5KB

No. of Threads Time taken

1 0.045 sec

2 0.037 sec

3 0.032 sec

4 0.026 sec

The analysis and optimization of the obtained results is

done using VTuneTM Amplifier XE 2013. Fig. 3 shows the

CPU usage histogram that represents the breakdown of

elapsed time. It visualizes what percentage of the wall

time the specific number of CPUs were running

simultaneously. This is obtained by performing the

hotspot analysis using VTuneTM Amplifier XE 2013. The

file encrypted is of the size 50KB.

Figure 3. CPU usage histogram.

VI. CONCLUSION

In this paper, the parallelization of the AES algorithm

is described. The AES algorithm was divided into

parallelizable and un-parallelizable parts. OpenMP

directives were used to parallelize the code by countering

the problems of data dependency and synchronization.

Then the concept of fork-join model was used to merge

these parts to form a single piece of code. The

comparison between execution times of sequential and

parallelized codes shows considerable improvements

after parallelization. The experiments carried out on the

computer with multiple number of threads show that the

application of the parallel AES algorithm considerably

boosts the time of the data encryption and decryption.

The results suggest that very attractive performance-

effort ratios can be achieved by OpenMP based high-

level language parallelization on modern symmetric

multiprocessor platforms. The parallelized AES

algorithm presented in this paper is also helpful for

hardware implementations [9].

Lecture Notes on Information Theory Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing 146

Lecture Notes on Information Theory Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing 147

ACKNOWLEDGMENT

We are thankful to Department of ECE, SDMCET, for

providing us with excellent laboratory facility. We also

acknowledge with gratitude the contribution of journals,

papers, organizations and books, which we have referred

to in the list of the references.

REFERENCES

[1] J. Daemen and V. Rijmen, “AES proposal: Rijndael,” AES

Algorithm Submission, Sept 1999
[2] National Inst. of Standards and Technology, Federal Information

Processing Standard Publication 197, The Advanced Encryption
Standard, Nov 2001

[3] W. Stallings, Cryptography and Network Security, Principles and

Practices, 4th ed. Pearson Education, 2006, pp. 134-161.
[4] OpenMP. [Online]. Available: http://www.openmp.org

[5] B. Chapman, G. Jost, and R. V. D. Pas, Using OpenMP-Portable
Shared Memory Parallel Programming, MIT Press, Cambridge

Massachusetts, London, England

[6] [Online]. Available: http://software.intel.com/en-
us/intel-vtune/

[7] M. Dworkin, “Recommendation for block cipher modes of
operation: Methods and techniques,” NIST Special Publication

800-38A, December 2001.

[8] H. Kasahara and S. Narita, “Practical multiprocessor scheduling
algorithms for efficient parallel processing,” IEEE Trans. Comput.,

vol. c-33, no. 11, pp. 1023-1029, Nov 1984.
[9] O-C. Mourad, S-M. Lotfy, M. Noureddine, B. Ahmed, and T.

Camel, “AES embedded hardware implementation, ” in Proc. 2nd

NASA/ESA Conference on Adaptive Hardware and Systems, 2007,
pp.103-109.

Siddalingesh S Navalgund was born on 18th July

1978. He has completed Bachelor of Engineering

(1999-2000) in Electronics and Communication
engineering at SDM College of Engineering and

Technology, Dharwad under Karnataka University
Dharwad. He has completed M.Tech (2003-2004) at

N.M.A.M.I.T under Visvesvaraya Technological

University, Belgaum, Karnataka state, INDIA. He is
presently pursuing PhD in the field of VLSI & DSP.

He is currently working as Assistant Professor in Department of
Electronics and Communication engineering in SDM College of

Engineering and Technology, Dharwad. He has many papers at national

and international level to his credit.

Mr. Navalgund is a life time member of ISTE, a member of Institution
of Engineers (INDIA) and is also a member of IETE.

Akshay Desai was born on 8th May 1992. He is

currently pursuing Undergraduate studies; in the
final year of Bachelor of Engineering (2012-2013)

in Electronics & Communication engineering at

SDM College of Engineering and Technology,
Dharwad under Visvesvaraya Technological

University, Belgaum, Karnataka state, INDIA.
He has presented a paper on FPGA implementation

of AES algorithm at the National Conference

NCCTIA’12 and won the best paper award. His research interests
include data security, parallel processing and systems, wireless

communication.
Mr. Desai is a student member of Institution of Electronics and

Telecommunication Engineers (IETE).

Krishna Ankalgi was born on 10th July 1991. He
is currently pursuing Undergraduate studies, in the

final year of Bachelor of Engineering (2012-2013)

in Electronics & Communication engineering at
SDM College of Engineering and Technology,

Dharwad under Visvesvaraya Technological
University, Belgaum, Karnataka state, INDIA.

He has presented a paper on FPGA implementation

of AES algorithm at the National Conference
NCCTIA’12 and won the best paper award. His research interests

include data security, parallel processing and systems, VLSI.
Mr. Ankalgi is a student member of Institution of Electronics and

Telecommunication Engineers (IETE).

Harish Yamanur was born on 17th October 1991.

He is currently pursuing Undergraduate studies,

in the final year of Bachelor of Engineering
(2012-2013) in Electronics & Communication

engineering at SDM College of Engineering and
Technology, Dharwad under Visvesvaraya

Technological University, Belgaum, Karnataka

state, INDIA.
He has presented a paper on FPGA

implementation of AES algorithm at the National Conference
NCCTIA’12 and won the best paper award. His research interests

include data security, parallel processing and systems, VHDL.

Mr. Yamanur is a student member of Institution of Electronics and
Telecommunication Engineers (IETE).

Intel Vtune.

