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
Abstract— In this paper, the goal is to perform the 

verification of fault-tolerant properties of a peer-to-peer 

(P2P) network consisting of n nodes running n 

corresponding parallel processes. The specification of the 

processes is in the form of communicating finite state 

machines (CFSMs).   The work to be reported in this paper 

follows the prequel work wherein, instead of the traditional 

approach to construct a single synchronous product 

machine by composing the given CFSMs, we simulate each 

of the CFSMs in the non-local environment  of other CFSMs 

and generate a set of what are called Communicating 

Minimal Prefix Machines(CMPMs). In this paper, we take 

the CMPMs model and perform the reachability analysis of 

certain global state vectors without losing the locality of the 

CFSMs of the given specification. This method cuts down 

the state space explosion and also opens out the possibility of 

distributed exploration of the local CFSM states. Fault-

tolerance consists of both safety and liveness properties and 

our approach provides a sound platform for performing 

state exploration/model-checking to verify these properties 

of the given set of application tasks that run in the P2P 

network. 

 

Index Terms—CFSMs-to-CMPMs model, liveness, model-

checking, P2P networks, safety, state-space explosion.  

 

I. INTRODUCTION 

A P2P network consisting of n distributed nodes 

running n corresponding parallel processes interact with 

each other through the network to accomplish a common 

goal. The fault-tolerance properties of a network of n 

distributed nodes can be grouped into two categories viz., 

safety and liveness and so proving fault-tolerance 

amounts to verification of these two sets of properties.  

Safety means that bad things (like communication 

deadlocks) will not happen. Liveness means that good 

things will happen. 

Eventuality properties such as certain global state 

vectors will be eventually reached come under liveness 

properties. Traditionally, Petrinet based models [1],[2], [3] 
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are used to verify safety and liveness but in these models, 

there is no static structure to do the verification. 

We assume that the peers of the network communicate 

with each other by synchronization (rendezvous) 

according to Hoare’s CSP model [4] and Milner’s 

calculus [5].  In our prequel work [6], we propose a 

computational model called Communicating Minimal 

Prefix Machines (CMPMs) from a given specification of 

Communicating Finite State Machines (CFSMs). The 

CMPMs model is an alternative to the traditional product 

automaton that incurs state-space explosion of the 

component CFSMs. CMPMs retain the localities of the 

partner nodes and at the same time store the synchronous 

global state vectors without incurring the exponential 

state complexity of the product machine. Thus it is an 

ideal model to perform formal verification by way of 

model-checking. 

Model-checking is usually done with the aid of a 

temporal logic such as LTL [7] and CTL [8] which are 

beyond the scope of this paper. We illustrate the 

rudiments of model-checking by demonstrating how to 

perform distributed and parallel searches of the simulated 

CMPM trees. 

We begin by presenting briefly the preliminaries of the 

computational model of CMPMs [9], [10]. 

II. THE COMPUTATIONAL MODEL OF CMPMS  

This model is developed from a given specification 

consisting of a set of communicating finite state machines 

(CFSMs) with inter-process communication similar to the 

one discussed in [11]. We process this specification 

consisting of a set of n CFSM graphs into a 

corresponding set of n unfolded trees whose leaves 

correspond to what are defined as cutoff states. Different 

CFSMs communicate by synchronous message passing 

upon synchronous actions. An event is an instance of an 

action. An action can be completely asynchronous/local 

to a CFSM or a synchronous one participated by a set of 

two or more CFSMs from the given set. Each unfolded 

CFSM is called a CMPM (Communicating Minimal 

Prefix Machine) for a reason to be explained in the sequel. 
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Each CMPM state represents not only its corresponding  

local CFSM state, but also a vector of non-local CFSM 

states that are its causal predecessors due to 

synchronization in the most recent past. This vector forms 

the synchronous environment of the concerned MPM 

state, unfolded from its corresponding CFSM.  

A. The CFSMs Specification 

The CFSM specification is based on Hoare’s CSP 

model [4]. We assume a set of n communicating and non-

terminating FSMs. Each CFSM is defined as a 6-tuple as 

shown in Fig. 1: 

A CFSM Fi = (s0fi, Sfi, Afi,  Rtfi,  Rsyncfi,,  Rsync0fi, ) 

}..1{ ni   where, 

 Sfi is the finite set of states of CFSM Fi, s0fi   Sfi  
being the initial state. 

 Afi is the finite set of asynchronous and 
synchronous actions of Fi.  

 If afi   Afi is a synchronous action, the list of 

indices [j1,j2,…jk], k ≤ n of the partner CFSMs are 

also specified in the square brackets along with afi 

 Rtfi is a ternary transition relation such that:  Rtfi 

fififi SAS  . In a so-called i-transition (sfi, 

afi, s’fi)   Rtfi  , sfi is called the input state and 
s’fi the output state. An i-transition (sfi, afi, s’fi) 
  Rtfi  is called synchronous  if afi[j1, j2,…,jk],  is 

a synchronous action such that :  a set of j-

transitions (sfj, afj, s’fj)   Rtfj ,  j { j1,j2,…jk}  
j≠ i  where afi = afj and (s’fi, s’fj)   Rsyncfi 

 Rsyncfi    Sfi     Sfj   , i ≠  j,   j {1..n},  is a 

binary relation which relates the output states of 
synchronous transitions. 

 Rsync0fi     Rsyncfi  relates  the set of pairs of 

initial states: Rsync0fi  = {(s0fi, s0fj), j {1..n}, i 

≠ j }. All the initial states are assumed to be in 
pairwise synchrony with each other to begin 
with. 

 

Figure 1.  Given set of CFSM graphs representing a P2P network 

B.  The Simulation of Non-terminating CFSMs  into  

Finitely Terminating    CMPM s 

The given set of CFSMs represented as cyclic, rooted, 

directed graphs is simulated in their respective global 

environments into a corresponding set of CMPMs, each 

represented by a directed, rooted tree structure as shown 

in Fig. 2.  

 

Figure 2.  Refined set of Terminating CMPM Trees from the Simulated 

Non-terminating CFSM graphs 

 A CMPM Mi = (s0i, Si, Ei, Rti, Rsynci, Rsync0i) , }..1{ ni  

where, 

the countably infinite sets of  states Si and  events Ei are 

generated as  instances of corresponding  finite sets Sfi 

and  Afi respectively of  CFSM Fi, i {1..n}. 

 

Si     Sfi   Nat ,    Ei     Afi   Nat    such that: 

 

fsi: Si  Sfi  , i {1..n} are a set of n many-to-one 

functions, mapping the infinite domain into finite range. 

where Nat is the set of natural numbers with  s0i = (sf0i, 0), 

i {1..n}.  The entities, Rsynci,,  Rsync0i can be defined 

similarly as corresponding  instances of CFSM entities 

Rsyncfi  and Rsync0fi.   

C. Well -founded, Partially-Ordered Causality 

Generation  

We unwind the CFSM graphs in their mutual global 

environment into CMPM trees by simulating each of the 

former in their respective non-local environments.  

The global, temporal causality order is composed 

using the binary relations Rsynci  and Ri,  where i   {1..n} 

as follows: 

 ::=  (Ri   Rsynci)
* 

The binary successor relation Ri is Rti with its events 

omitted. The binary relation   represents the partially 

ordered, well-founded causality relation among the states 

of CMPMs based on their points of entry in time. 

The Rsynci  relations capture the equality in time of the  

synchronous output states they relate. 

D. Cut- off States of Simulation 

The given CFSMs specification contains non-

terminating states due to cycles. We unwind these cycles 

during simulation and terminate them into cut-off states.  

The cut-off state has the property that its corresponding 

global state vector of CFSMs is identical with one of its 

predecessors/ancestors in the tree structure generated. 

Definition 1: A path Pi of the Minimal prefix machine 

is defined as a sequence of local states starting at the 

initial state s0i and ending at an arbitrary state s"i such 

that Pi = <soi Ri si Ri s'i Ri… Ri s"i>. The state s"i is said to 

be the maximal state of Pi. 

Definition 2: A cut-off state is one satisfying the 

following condition:  
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If  si , s’i are two states of a given path Pi of Mi such 

that: s = (s1,s2,…sn) ,  s’ = (s’1,s’2,…,s’n) and if the 

corresponding CFSM-vectors are equal i.e., (fs1(s1), 

fs2(s2),…, fsn(sn)) =  (fs1(s’1), fs2(s’2),…, fsn(s’n)) , then we 

say that s’i which is the descendent of si is isomorphic 

with s’i and is called  a cut-off state of the CMPM Mi..  

III.  DISTRIBUTED ALGORITHM FOR MODEL CHECKING  

The simulated CMPM trees represent a globally 

interacting set of heterogeneous automata without 

incurring the state-space explosion of the conventional 

one single homogeneous synchronous product automaton. 

The algorithm to generate the CMPM trees by recursive 

simulation of given CFSM graphs are reported in [9],[10] 

and [12]. This enables us to perform the state exploration 

in a distributed, parallel fashion. Since the locality of 

each CMPM component is maintained, it is enough to 

search the corresponding component trees depending on 

the property to be verified. 

A. Assumptions Made in Model-checking 

Our model-checking consists of reachability analysis 

of the state vectors.  The CMPMs model has distributed 

the synchronous global-state vectors into n interactive 

components. 

The fault-tolerance properties consist of safety and 

liveness properties. Safety properties mainly consist of 

guarantee of absence of communication deadlocks. A 

deadlocked state is a state such that there is no outgoing 

transition is possible. Liveness properties consist of 

eventuality guarantee which means that eventually certain 

global state vectors are reachable. A reachable state is a 

state such that there exists a path from the initial state to 

the state in question. We assume that all the interesting 

global-state vectors of scrutiny are synchronous global-

state vectors whose reachability can be analysed in a 

parallel fashion by making depth-first analysis of the 

CMPM trees independently and thus concurrently. 

B. The Model –checking Algorithm 

1) Detection of Communication deadlocks 

/* Parallel checking of all n CMPM-trees Mi, i= 1..n to 

check the reachability of leaf-states that are non-cutoff 

states. */ 

deadlock_state_listi : List of deadlocked states from Mi, 

i= 1..n; 

find_dead_statesi(si) 

{ 

   if si is a (leaf-state   not (cut_off_state)) 

   { 

 add (si, dead_state_listi); 

     return; 

   } 

  else if si is a leaf-state 

    return; 

  for all next_states s’i of si  

    return(find_dead_statesi(s’i)); 

} 

Main() 

{ 

   Deadlock_state_listi:= Null, for all i=1..n; 

   Par begin 

      For i=1..n do  find_dead_statesi(s0i); 

   Par end; 

} 

2) Detection of Liveness Property 

/* This involves checking all the k CMPM trees Mi, 

i=1..k  

For the reachability of the given synchronous state 

vector.*/ 

    Chk_treei(si, sf)  

    { 

   if (id(si) = sfi    id(envj(si)) = sfj  for all j = 1..k, k≠ i) 

     return(true);  

         else if  si is a leaf state 

            return(false) ; 

      else for all next states s’i  

such that: (si Ri s’i) is a transition do 

         { 

             successi:= Chk_treei(s’i, sf); 

    if (successi) return(true); 

    else continue; 

         } 

    }/*Chk_treei() */ 

 
     Main() 

     { 

           Par begin 

             for i = 1..k do 

             successi := Chk_treei(s0i, sf); 

           Par end; 

      } 

C. Complexity of the Model –Checking Algorithms 

Since the procedure of distributed model-checking is 

recursive, the proof of correctness can be done by 

induction.  

The time complexities of both the algorithms involve 

depth-first recursive search of at most all n CMPM trees 

in parallel, checking all the states of each CMPM tree at 

most once. Thus they are linear in the number of total 

states, N of all the component CMPMs. 

IV. CONCLUSIONS, FUTURE WORK 

We have proposed a couple of model-checking 

algorithms based on CMPMs model to verify the fault-

tolerant properties consisting of safety and liveness 

properties. Safety involves detection of communication 

deadlocked states. Liveness property involves eventual 

occurrence of certain required synchronous global state 

vectors. In the future, we plan to extend the model-

checking algorithms by proposing a branching-time 

temporal logic whose formulae can be checked using our 

CMPMs model. Compared to the methods reported in [8] 

and [13], our method is distributed. Also, compared to the 

approach reported in [13] and [14], our method is more 

efficient and easier as there is a static model to perform 

the verification in our case. 
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