
A Model-checking Algorithm for Formal-

verification of Peer-to-peer Fault-tolerant

Networks

Sungeetha Dakshinamurthy
Research Scholar/Sathyabama university,Chennai, India

Email: (e-mail:sungeetha5@yahoo.com).

Vasumathi K. Narayanan
St. Joseph’s college of Engineering Chennai, India

Email: (e-mail: vasumathin@yahoo.com).


Abstract— In this paper, the goal is to perform the

verification of fault-tolerant properties of a peer-to-peer

(P2P) network consisting of n nodes running n

corresponding parallel processes. The specification of the

processes is in the form of communicating finite state

machines (CFSMs). The work to be reported in this paper

follows the prequel work wherein, instead of the traditional

approach to construct a single synchronous product

machine by composing the given CFSMs, we simulate each

of the CFSMs in the non-local environment of other CFSMs

and generate a set of what are called Communicating

Minimal Prefix Machines(CMPMs). In this paper, we take

the CMPMs model and perform the reachability analysis of

certain global state vectors without losing the locality of the

CFSMs of the given specification. This method cuts down

the state space explosion and also opens out the possibility of

distributed exploration of the local CFSM states. Fault-

tolerance consists of both safety and liveness properties and

our approach provides a sound platform for performing

state exploration/model-checking to verify these properties

of the given set of application tasks that run in the P2P

network.

Index Terms—CFSMs-to-CMPMs model, liveness, model-

checking, P2P networks, safety, state-space explosion.

I. INTRODUCTION

A P2P network consisting of n distributed nodes

running n corresponding parallel processes interact with

each other through the network to accomplish a common

goal. The fault-tolerance properties of a network of n

distributed nodes can be grouped into two categories viz.,

safety and liveness and so proving fault-tolerance

amounts to verification of these two sets of properties.

Safety means that bad things (like communication

deadlocks) will not happen. Liveness means that good

things will happen.

Eventuality properties such as certain global state

vectors will be eventually reached come under liveness

properties. Traditionally, Petrinet based models [1],[2], [3]

Manuscript received January 10, 2013; revised March 15, 2013.

are used to verify safety and liveness but in these models,

there is no static structure to do the verification.

We assume that the peers of the network communicate

with each other by synchronization (rendezvous)

according to Hoare’s CSP model [4] and Milner’s

calculus [5]. In our prequel work [6], we propose a

computational model called Communicating Minimal

Prefix Machines (CMPMs) from a given specification of

Communicating Finite State Machines (CFSMs). The

CMPMs model is an alternative to the traditional product

automaton that incurs state-space explosion of the

component CFSMs. CMPMs retain the localities of the

partner nodes and at the same time store the synchronous

global state vectors without incurring the exponential

state complexity of the product machine. Thus it is an

ideal model to perform formal verification by way of

model-checking.

Model-checking is usually done with the aid of a

temporal logic such as LTL [7] and CTL [8] which are

beyond the scope of this paper. We illustrate the

rudiments of model-checking by demonstrating how to

perform distributed and parallel searches of the simulated

CMPM trees.

We begin by presenting briefly the preliminaries of the

computational model of CMPMs [9], [10].

II. THE COMPUTATIONAL MODEL OF CMPMS

This model is developed from a given specification

consisting of a set of communicating finite state machines

(CFSMs) with inter-process communication similar to the

one discussed in [11]. We process this specification

consisting of a set of n CFSM graphs into a

corresponding set of n unfolded trees whose leaves

correspond to what are defined as cutoff states. Different

CFSMs communicate by synchronous message passing

upon synchronous actions. An event is an instance of an

action. An action can be completely asynchronous/local

to a CFSM or a synchronous one participated by a set of

two or more CFSMs from the given set. Each unfolded

CFSM is called a CMPM (Communicating Minimal

Prefix Machine) for a reason to be explained in the sequel.

Lecture Notes on Information Theory Vol. 1, No. 3, September 2013

128©2013 Engineering and Technology Publishing
doi: 10.12720/lnit.1.3.128-131

Each CMPM state represents not only its corresponding

local CFSM state, but also a vector of non-local CFSM

states that are its causal predecessors due to

synchronization in the most recent past. This vector forms

the synchronous environment of the concerned MPM

state, unfolded from its corresponding CFSM.

A. The CFSMs Specification

The CFSM specification is based on Hoare’s CSP

model [4]. We assume a set of n communicating and non-

terminating FSMs. Each CFSM is defined as a 6-tuple as

shown in Fig. 1:

A CFSM Fi = (s0fi, Sfi, Afi, Rtfi, Rsyncfi,, Rsync0fi,)

}..1{ ni where,

 Sfi is the finite set of states of CFSM Fi, s0fi  Sfi
being the initial state.

 Afi is the finite set of asynchronous and
synchronous actions of Fi.

 If afi  Afi is a synchronous action, the list of

indices [j1,j2,…jk], k ≤ n of the partner CFSMs are

also specified in the square brackets along with afi

 Rtfi is a ternary transition relation such that: Rtfi

fififi SAS  . In a so-called i-transition (sfi,

afi, s’fi)  Rtfi , sfi is called the input state and
s’fi the output state. An i-transition (sfi, afi, s’fi)
 Rtfi is called synchronous if afi[j1, j2,…,jk], is

a synchronous action such that :  a set of j-

transitions (sfj, afj, s’fj)  Rtfj ,  j { j1,j2,…jk}
j≠ i where afi = afj and (s’fi, s’fj)  Rsyncfi

 Rsyncfi  Sfi  Sfj , i ≠ j, j {1..n}, is a

binary relation which relates the output states of
synchronous transitions.

 Rsync0fi  Rsyncfi relates the set of pairs of

initial states: Rsync0fi = {(s0fi, s0fj), j {1..n}, i

≠ j }. All the initial states are assumed to be in
pairwise synchrony with each other to begin
with.

Figure 1. Given set of CFSM graphs representing a P2P network

B. The Simulation of Non-terminating CFSMs into

Finitely Terminating CMPM s

The given set of CFSMs represented as cyclic, rooted,

directed graphs is simulated in their respective global

environments into a corresponding set of CMPMs, each

represented by a directed, rooted tree structure as shown

in Fig. 2.

Figure 2. Refined set of Terminating CMPM Trees from the Simulated

Non-terminating CFSM graphs

 A CMPM Mi = (s0i, Si, Ei, Rti, Rsynci, Rsync0i) , }..1{ ni

where,

the countably infinite sets of states Si and events Ei are

generated as instances of corresponding finite sets Sfi

and Afi respectively of CFSM Fi, i {1..n}.

Si  Sfi  Nat , Ei  Afi  Nat such that:

fsi: Si  Sfi , i {1..n} are a set of n many-to-one

functions, mapping the infinite domain into finite range.

where Nat is the set of natural numbers with s0i = (sf0i, 0),

i {1..n}. The entities, Rsynci,, Rsync0i can be defined

similarly as corresponding instances of CFSM entities

Rsyncfi and Rsync0fi.

C. Well -founded, Partially-Ordered Causality

Generation

We unwind the CFSM graphs in their mutual global

environment into CMPM trees by simulating each of the

former in their respective non-local environments.

The global, temporal causality order is composed

using the binary relations Rsynci and Ri, where i  {1..n}

as follows:

 ::= (Ri  Rsynci)
*

The binary successor relation Ri is Rti with its events

omitted. The binary relation  represents the partially

ordered, well-founded causality relation among the states

of CMPMs based on their points of entry in time.

The Rsynci relations capture the equality in time of the

synchronous output states they relate.

D. Cut- off States of Simulation

The given CFSMs specification contains non-

terminating states due to cycles. We unwind these cycles

during simulation and terminate them into cut-off states.

The cut-off state has the property that its corresponding

global state vector of CFSMs is identical with one of its

predecessors/ancestors in the tree structure generated.

Definition 1: A path Pi of the Minimal prefix machine

is defined as a sequence of local states starting at the

initial state s0i and ending at an arbitrary state s"i such

that Pi = <soi Ri si Ri s'i Ri… Ri s"i>. The state s"i is said to

be the maximal state of Pi.

Definition 2: A cut-off state is one satisfying the

following condition:

Lecture Notes on Information Theory Vol. 1, No. 3, September 2013

129©2013 Engineering and Technology Publishing

If si , s’i are two states of a given path Pi of Mi such

that: s = (s1,s2,…sn) , s’ = (s’1,s’2,…,s’n) and if the

corresponding CFSM-vectors are equal i.e., (fs1(s1),

fs2(s2),…, fsn(sn)) = (fs1(s’1), fs2(s’2),…, fsn(s’n)) , then we

say that s’i which is the descendent of si is isomorphic

with s’i and is called a cut-off state of the CMPM Mi..

III. DISTRIBUTED ALGORITHM FOR MODEL CHECKING

The simulated CMPM trees represent a globally

interacting set of heterogeneous automata without

incurring the state-space explosion of the conventional

one single homogeneous synchronous product automaton.

The algorithm to generate the CMPM trees by recursive

simulation of given CFSM graphs are reported in [9],[10]

and [12]. This enables us to perform the state exploration

in a distributed, parallel fashion. Since the locality of

each CMPM component is maintained, it is enough to

search the corresponding component trees depending on

the property to be verified.

A. Assumptions Made in Model-checking

Our model-checking consists of reachability analysis

of the state vectors. The CMPMs model has distributed

the synchronous global-state vectors into n interactive

components.

The fault-tolerance properties consist of safety and

liveness properties. Safety properties mainly consist of

guarantee of absence of communication deadlocks. A

deadlocked state is a state such that there is no outgoing

transition is possible. Liveness properties consist of

eventuality guarantee which means that eventually certain

global state vectors are reachable. A reachable state is a

state such that there exists a path from the initial state to

the state in question. We assume that all the interesting

global-state vectors of scrutiny are synchronous global-

state vectors whose reachability can be analysed in a

parallel fashion by making depth-first analysis of the

CMPM trees independently and thus concurrently.

B. The Model –checking Algorithm

1) Detection of Communication deadlocks

/* Parallel checking of all n CMPM-trees Mi, i= 1..n to

check the reachability of leaf-states that are non-cutoff

states. */

deadlock_state_listi : List of deadlocked states from Mi,

i= 1..n;

find_dead_statesi(si)

{

 if si is a (leaf-state  not (cut_off_state))

 {

 add (si, dead_state_listi);

 return;

 }

 else if si is a leaf-state

 return;

 for all next_states s’i of si

 return(find_dead_statesi(s’i));

}

Main()

{

 Deadlock_state_listi:= Null, for all i=1..n;

 Par begin

 For i=1..n do find_dead_statesi(s0i);

 Par end;

}

2) Detection of Liveness Property

/* This involves checking all the k CMPM trees Mi,

i=1..k

For the reachability of the given synchronous state

vector.*/

 Chk_treei(si, sf)

 {

 if (id(si) = sfi  id(envj(si)) = sfj for all j = 1..k, k≠ i)

 return(true);

 else if si is a leaf state

 return(false) ;

 else for all next states s’i

such that: (si Ri s’i) is a transition do

 {

 successi:= Chk_treei(s’i, sf);

 if (successi) return(true);

 else continue;

 }

 }/*Chk_treei() */

 Main()

 {

 Par begin

 for i = 1..k do

 successi := Chk_treei(s0i, sf);

 Par end;

 }

C. Complexity of the Model –Checking Algorithms

Since the procedure of distributed model-checking is

recursive, the proof of correctness can be done by

induction.

The time complexities of both the algorithms involve

depth-first recursive search of at most all n CMPM trees

in parallel, checking all the states of each CMPM tree at

most once. Thus they are linear in the number of total

states, N of all the component CMPMs.

IV. CONCLUSIONS, FUTURE WORK

We have proposed a couple of model-checking

algorithms based on CMPMs model to verify the fault-

tolerant properties consisting of safety and liveness

properties. Safety involves detection of communication

deadlocked states. Liveness property involves eventual

occurrence of certain required synchronous global state

vectors. In the future, we plan to extend the model-

checking algorithms by proposing a branching-time

temporal logic whose formulae can be checked using our

CMPMs model. Compared to the methods reported in [8]

and [13], our method is distributed. Also, compared to the

approach reported in [13] and [14], our method is more

efficient and easier as there is a static model to perform

the verification in our case.

REFERENCES

Lecture Notes on Information Theory Vol. 1, No. 3, September 2013

130©2013 Engineering and Technology Publishing

[1] W. Reisig, “Towards a temporal logic for causality and choice in

Distributed systems,” Lecture Notes in Computer Science, 1989,

vol. 354, pp. 603-627.

[2] K. L. McMillan, “Using unfolding to avoid the state space

explosion problem in the verification of asynchronous circuits,” in

Proc. 4th Workshop on Computer Aided Verification, 1992.

[3] J. Esparza, S. Romer, and W. Vogler, “An improvement of Mc.

Millan’s unfolding algorithm,” Formal Methods in System Design,

May 2002, vol. 20, no. 3, pp. 285-310.

[4] C. A. R. Hoare, “Communicating Sequential Processes,” Prentice

Hall 1984.

[5] R. Milner, “Calculi for synchrony and asynchrony,” Theoretical

Computer Science, vol. 25, no. 2, pp. 267-310, 1983.

[6] S. Dakshinamurthy and V. Narayanan, “A parallel algorithm for

model-transformation of interactive state machine specification,”

International Journal of Wisdom Based Computing, vol. 2 no. 1,

pp. 52-57, Apr 2012.

[7] E. M. Clarke, “Model-checking–My 27 year quest to overcome

the state explosion problem,” Lecture Notes in Artificial

Intelligence, 2008, vol. 5330.

[8] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic

verification of finite state concurrent systems using temporal logic

specification: A practical approach,” in Proc. 10th ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages,

1983, pp. 117-126.

[9] S. Dakshinamurthy and V. Narayanan, “A fully-distributed

checkpointing-protocol for fault-tolerance in real-time distributed

systems,” in National IETE Conf., 2012.

[10] Vasumathi K. Narayanan, “A state-oriented, partial-order model

and logic for distributed systems verification,” Ph.D. Thesis,

Concordia University, Montreal, 1997.

[11] L. Lamport, “On interprocess communication, Part I: Basic

formalisms; Part II: Algorithms,” Distributed Computing, vol. 1,

pp. 77-101, 1986.

[12] S. Dakshinamoorthy and V. Narayanan, “A component-based

approach to verification of formal software models to check safety

properties of distributed systems,” Submitted to the Conference,

2013.

[13] J.Esparza and S. Romer, “An Unfolding Algorithm for

synchronous products of Transition Systems,” in Proc.

International Conference on Concurrency Theory, 2002.

[14] Valmari, “A stubborn attack on state explosion,” Lecture Notes in

Computer Science, 1991, vol. 531, pp. 156-165.

Dr. Vasumathi Narayanan has completed her

B.E. from Anna University, Chennai, M.E. from

Indian Institute of Science, Bangalore and Ph D

from Concordia University, Montreal Canada in

1997. Her areas of specialization are in formal

methods, concurrency theory, model-checking of

distributed systems and temporal logics. She has

about five years of industrial experience and

about fifteen years of research experience. She

has co-authored more than ten research publications. Presently she is

working as a professor in St.Joseph’s college of engineering in Chennai,

India.

Sungeetha Dakshinamurthy has completed

M.Tech in VLSI at Sathyabama University,

Chennai, India. She is an Associate Professor at St.

Joseph’s college of Engineering, Chennai, India.

She also coauthored A Parallel Algorithm for

Model-Transformation of Interactive State machine

Specification (Wisdom based computing, 2012), A

fully - distributed Check pointing - protocol for

fault Tolerance in Real –Time Distributed systems

(IETE ,2012).She is currently undergoing Ph.D., in Fault tolerance for

Dynamic Reconfigurable System .Her experience includes work in the

area of VLSI Communication. Her present work is aimed at application

of Fault Tolerance in Robotics & Space Systems.

Author’s formal

photo

Author’s formal

photo

Lecture Notes on Information Theory Vol. 1, No. 3, September 2013

131©2013 Engineering and Technology Publishing

