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Abstract— System Identification is an important area of 

research in signal processing to design an unknown system. 

The identification task covers almost all the areas of 

engineering application such as problem of building models 

of systems. When insignificant prior information is available 

and system’s properties are known up to a few parameters, 

identification is most useful. This paper approaches the 

system identification problem using WLMS Algorithm 

(Wilcoxon based LMS) in presence of outliers. Also the 

result is compared with the conventional LMS. In addition 

to it, the error is analyzed for the deviation factor at the 

time of analysis. The result shows an excellent performance 

with minimum training samples. 


Index Terms— Wilcoxon norm; Least Mean Square (LMS); 

WLMS algorithm; system identification. 

I. INTRODUCTION 

In machine learning, incomplete data is a big problem. 

There are many possibilities that can cause the training 

data to be incomplete, such as mislabeling, biases, non-

sufficiency, imbalance, noise, outliers, etc. The Least 

Mean Square (LMS) algorithm is generally used as a 

learning tool for optimization technique. The LMS model 

is to minimize the Euclidean norm by the help of a 

conventional least square fit analysis. LMS uses a 

gradient-based method of steepest decent and it uses the 

estimates of the gradient vector from the available data 

[1]. It incorporates an iterative procedure that makes 

successive corrections to the weight vector in the 

direction of the negative of the gradient vector which 

eventually leads to the minimum mean square error [2]. 

But the resulting model obtained by this approach is not 

effective against outliers. 

The convergence of the LMS algorithm is inversely 

proportional to the eigenvalue spread of the correlation 

matrix. When the eigenvalues are widespread, 

convergence may be very slow [3].The eigenvalue spread 

of the correlation matrix is estimated by computing the 

ratio of the largest eigenvalue to the smallest eigenvalue 

of the matrix. The step-size parameter or the convergence 

factor µ is the basis for the convergence speed of the 

LMS algorithm. When µ is small the convergence rate is 

slow, the error is still quite large. A moderately large 

value of µ leads to faster convergence. However, when 

the value of µ is too high it leads to the instability of the 

algorithm and leads to an erroneous result [2]. 

In most of the real time application, the objective is to 

model the structure and estimate the parameters 
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effectively in presence of outliers [4]. An outlier is a 

pattern that was either mislabeled in the training data, or 

inherently ambiguous and hard to recognize, therefore, it 

usually brings extra trouble for a learning task, either in 

debasing the performance or leading the learning process 

to be more complicated [5]. These outliers are 

observations that are separated in some fashion from the 

rest of the data. Hence, outliers are data points that are 

not typical of the rest of the data. Outliers can occur by 

chance in any distribution, but they are often indicative 

either of measurement error or that the population has a 

heavy-tailed distribution. Depending on their location, 

outliers may have moderate to severe effects on the 

regression model. It is always required to discard them or 

use statistics that are robust to outliers. A regressor or a 

learning machine is said to be robust if it is insensitive to 

outliers in the set of input data [6].  

To achieve improved and dynamic performance, 

regression based on the Wilcoxon norm minimization is 

also suggested in literature [7]. Most of the application 

areas such as in Communication, machine learning, data 

mining, adaptive control etc., it has used successfully. In 

this paper, Wilcoxon norm is used as cost function 

instead of MSE function for LMS algorithm. The 

application is considered as the system identification and 

has analyzed using proposed adaptive algorithm. The 

error curve as well as the performance is compared 

between LMS and WLMS in presence of outliers.  

II.  

Least mean squares (LMS) algorithms are used in 

adaptive systems to find the coefficients that relate to 

producing the least mean squares of the error signal 

(difference between the desired and the actual signal). It 

is a stochastic gradient descent method in which the filter 

is only adapted, based on the error at the current time [2].  

 In LMS Algorithm the simplified cost function, 

ξ ( )LMS n  is given by 

2ξ ( ) 1/ 2 ( )LMS n e n     (1) 

where e(n) is defined as the error function which is the 

difference between the original output of the unknown 

system and estimated output of the adaptive filter.  

The cost function in (1) can be thought of as an 

instantaneous estimate of the MSE (mean square error) 

cost function which is extremely useful for practical 

applications and the weight update LMS equation is 

given by 
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( 1) ( ) ( ) ( )w n w n e n x n              (2) 

where w(n) and x(n) represents the weight of the FIR 

adaptive filter and input samples respectively. 

Equation (2) requires only multipliers and adders to 

implement. In fact, the number and type of operations 

needed for the LMS algorithm is nearly the same as that 

of the FIR filter structure with fixed coefficient values, 

which is one of the reasons for the algorithm's popularity. 

The behavior of the LMS algorithm had been widely 

studied before, and numerous results concerning its 

adaptation characteristics under different situations have 

already been developed. 

However, the average behavior of the LMS algorithm 

is quite similar to that of the steepest descent algorithm in 

which it depends explicitly on the statistics of the input 

and desired response signals. In effect, the iterative nature 

of the LMS coefficient updates is a form of time-

averaging that smoothes the errors in the instantaneous 

gradient calculations to obtain a more reasonable estimate 

of the true gradient. The problem is that gradient descent 

is a local optimization technique, which is limited 

because it is unable to converge to the global optimum on 

a multimodal error surface if the algorithm is not 

initialized in the basin of attraction of the global optimum. 

As well as the conventional LMS algorithm tends to 

converge very slowly, for which we need to apply more 

number of input training samples [8]. Also the LMS 

algorithm is very sensitive to outliers i.e. the performance 

of LMS algorithm is affected severely in presence of 

outliers [9].  

In direct modeling process using LMS Algorithm we 

are updating the weights of adaptive filter so that the 

result is optimized and simultaneously the error is 

minimized. Here we are taking the input samples within a 

predefined range. But in any practical system outliers are 

always expected. In presence of outliers the direct 

modeling using LMS is not a robust one i.e. the error 

increases rapidly with the increase in percentage of 

outliers. Wilcoxon Algorithm can overcome this problem. 

III. WILCOXON LMS ALGORITHM 

Wilcoxon Algorithm is one of the effective methods of 

robust identification [7]. The cost function taken in the 

proposed model is a robust norm called Wilcoxon norm. 

The weights of the models are updated using 

conventional LMS, which progressively reduces the norm 

[9].  

The Wilcoxon Norm of a vector is analyzed in terms of 

a score function which is defined as   

Ф( ) :[0,1]u R       (3) 

which is non-decreasing such that   

1

2

0

Φ ( )u du               (4) 

Usually the score function is standardized such that 
1

2

0

Ф ( ) 1u du      (5) 

   and  
1

0

Ф( ) 0u du        (6) 

Let the error vector of pth particle at kth generation 

due to application of N input samples to the model be 

represented as [e1,p(k),e2,p(k),…….eN,p(k)]T. The errors are 

then arranged in an increasing manner from which the 

rank R[en,p(k)] each lth error term is obtained. The score 

associated with each rank of the error term is evaluated as 

( ) Ф( ) 12( )

12 0.5
1

a i u u

i

N

 

 
  

 

     (7) 

where N is a fixed positive number. and (1 ≤ i ≤ N ) 

denotes the rank associated with each error term. At kth 

generation of each pth particle, the Wilcoxon norm is 

calculated as                 

,

1

( ) ( ) ( )
N

p i p

i

C k a i e k


             (8) 

The learning strategy using LMS Algorithm continues 

until the cost function Cp(k) in (8) decreases to the 

possible minimum value [10]. 

IV. SYSTEM IDENTIFICATION 

The process of going from observed data to a 

mathematical model is fundamental in science and 

engineering. In the control area, this process has been 

termed system identification. The identification task is to 

determine a suitable estimate of finite dimensional 

parameters, which completely characterize the plant. The 

selection of the estimate is based on comparison between 

the actual output sample and a predicted value on the 

basis of input data up to that instant [11].  

 

Figure 1.  Block diagram for system identification 

The block diagram for system identification is shown 

in Fig. 1. The model is placed parallel to the linear plant 

and same input is given to the plant as well as the model. 

The impulse response of the linear segment of the plant is 

represented by h(n). A white Gaussian noise q(n) is added 

with the linear output accounts for measurement noise. 

The desired output d(n) is compared with the estimated 

output y(n) of the identifier to generate the error e(n), 

which is used by some adaptive algorithm for updating 

the weights of the model. 
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Here the model chosen for the adaptive filter is a 

typical linear filter. So the practical goal of the adaptive 

filter is to determine the best linear model that describes 

the input-output relationship of the unknown system. 

Such a procedure makes the most sense when the 

unknown system is also a linear model of the same 

structure as the adaptive filter. 

The training of the filter weights is continued until the 

error becomes minimum and does not decrease further. 

At this stage the correlation between input signal and 

error signal is minimum. Here the training is stopped and 

the weights are stored for testing. For testing purpose new 

samples are passed through both the plant and the model 

and their responses are compared. The optimal model or 

solution is attained when this function of the error is 

minimized [12]. The model of system identification can 

be expressed in terms of mathematical equations. 

The error signal is expressed mathematically as 

          ( ) ( ) ( )e n d n y n                   (9) 

The estimated output of the adaptive filter is found to 

be 

         ( ) ( ). ( )
T

y n w n x n            (10) 

where w(n) are the parameters correspond to the weights 

the adaptive filter at time n. 

When  ( ) 0e n  , then ( ) ( )d n y n         (11) 

The above said condition occurs at a particular set of 

weights that is known as optimized value i.e. 

      ( ) ( )
opt

w n w n for  n               (12) 

 where wopt(n) is an optimum set of filter coefficients for 

the unknown system at time n. When the adaptive filter 

weights are optimized, at that time the model provides the 

best performance.   

V.  RESULT & DISCUSSION 

It has been simulated by taking learning rate parameter 

µ as 0.2 and SNR as 30db. The weight update equation is 

used for system identification. The analysis is carried 

without outliers as well as in presence of outliers and the 

simulation results are compared. The original weight of 

the system is taken as a set of standard weights [0.2600 

0.9300 0.2600]. 

A. Comaparison of Performance  

 

Figure 2.  Comparison of the actual weight with the estimated weight 

using LMS and WLMS without outliers 

 

Figure 3.  Comparison of the actual weight with the estimated weight 

using LMS and WLMS in presence of outliers 

From the simulation results (Fig. 2 & Fig. 3), it is seen 

that both LMS and WLMS converges effectively without 

outliers but in presence of outliers WLMS converges 

whereas LMS produces more deviation. 

B. Effect on Performance Due to the Variation of the no. 

of Input training Samples in Presence of Outliers: 

Number of training samples - 200 

 

Figure 4.  Comparison of the actual weight with the estimated weight 

using LMS and WLMS in presence of outliers 

Number of training samples - 300 

 

Figure 5.  Comparison of the actual weight with the estimated weight 

using LMS and WLMS in presence of outliers 

Number of training samples - 400 

 

Figure 6.  Comparison of the actual weight with the estimated weight 

using LMS and WLMS in presence of outliers 
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For 200 number of training input samples (Fig. 4, Fig. 5, 

Fig. 6), WLMS Algorithm provides optimized result with 

very less deviation whereas the result is diverged in case 

of LMS Algorithm with high deviation. As the number of 

input samples increases, the performance of WLMS is 

unaffected but LMS output remains diverged with 

variable deviation. It is concluded that WLMS 

convergence faster compared to LMS. The deviation 

values have been mentioned in the Table I. 

C. Error Analysis & Comparison 

 

Figure 7.  Comparison of the error curve using LMS and WLMS 

without outliers. 

 

Figure 8.  Comparison of the error curve using LMS and WLMS in 

presence of outliers 

From Fig. 7 and Fig. 8, without outliers LMS gives 

better error response where as in presence of outliers 

WLMS produces better result as compared to LMS. Also, 

it converges quickly whereas LMS produces more 

deviation. 

TABLE I.  [DEV.=(W1-H1)2+(W2-H2)2+(W3-H3) 2] 

 

VI. CONCLUSION 

The paper has proposed for WLMS algorithm. The 

application is considered and tested for system 

identification. Also, the error rate has been analyzed by 

considering the deviation parameter. Simulation study 

clearly demonstrates that the WLMS based method 

achieves better results than its LMS counterparts, both in 

terms of speed and minimum MSE. The further work can 

be applied with the variance factor as well as the step size 

parameter.  
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