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Abstract— In this paper, we present a novel algorithm for 

simulating fluids at high resolution quickly. Instead of 

solving the Navier-Stokes equations over a highly refined 

mesh, we only require a low grid resolution to resolve the 

underlying base flow. We then use a novel incompressible 

turbulence function and compute transport of turbulent 

energy using a complete   model, which generate accurate 

production terms that allows us to capture turbulence 

effects. We will show how our technique complements 

previous work and demonstrate that it can efficiently 

generate detailed simulations with low computation cost and 

also suitable for parallel architectures. 

 

Index Terms—Physically Base Animation, Fluid Simulation, 

Incompressible Flow, Turbulence. 

 

I. INTRODUCTION 

In physic, fluids fall into two categories 

incompressible and compressible flow. Incompressible 

flow is a liquid, such as water. Compressible flow 

corresponds to gas such as air or steam. Compressible 

flow is called compressible because we can easily change 

the volume of this fluid. All fluids, even water can 

change their volume. However, we simply ignore 

compressibility in fluids like water because it is very 

difficult and require very special condition to compress 

them. So we refer them simply as incompressible. 

The phenomena of fluids such as smoke and water are 

fascinating to watch, but the physical simulation of fluids 

is one of the most challenging problems because of their 

chaotic, turbulent nature. To simulate fluids, there are two 

common techniques are grid based and particle based 

simulations. Grid based simulations are typically highly 

accurate, although relatively slow compared to particle 

based solutions. Particle based simulations are usually 

faster, but they usually do not look as good as grid based 

simulations. In this work we will focus on fluid 

simulations with grid based techniques due to their 

widespread use. 

Although many methods have used grid based 

techniques to produce visually compelling results, the 

size of the grids that these techniques can use is limited 

by the amount of computational power available. Because 

turbulence in fluids extends over many scales, a direct 

simulation resolving all details requires a costly high 

resolution calculation. The high cost of a direct numerical 
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simulation has lead to increasing interest in algorithms to 

synthetically generate turbulence for augmenting low 

resolution simulations. 

As a consequence, many authors have developed 

algorithms that add noise or turbulence to the simulations. 

Unfortunately, current methods, especially complex ones 

that capture effects more accurately, often rely on strong 

assumptions about the production of turbulence, which is 

a very important factor that strongly determines the 

quality of the dynamics generated with the turbulence 

model. In our technique, we have designed our method to 

generate small scale fluid detail procedurally. To avoid 

costly computation, we only solve the Navier-Stokes 

equations for very coarse base simulations. We then use a 

full two equation energy transport model with physically 

plausible production terms. So, the large scales are 

computed using a low resolution fluid solver and a full 

energy function is used to compute details and exactly the 

production terms of turbulence model. 

Our contributions are as follows: 

 A scalable, incompressible turbulence function 

that can generate turbulent energy. 

 An energy transport model base on k   model 

that realistically captures the turbulence 

production. 

 A new and robust algorithm to synthetic 

turbulence from low resolution fluid solver. 

II. RELATED WORK 

Fluid simulations have become popular in computer 

graphic when Stam [1] introduced semi-Lagrangian 

method for simulating stable fluids.  Although this grid 

based technique successfully simulates stable fluids, the 

size of the grids is limited by the amount of 

computational power available. Many subsequent works 

have improved initial algorithm. Fedkiw [2] introduced 

vorticity confinement, which detecting and amplifying 

existing vortices to combat dissipation. Selle [3] used 

vortex particles for higher simulations. Back Forth Error 

Compensation and Correction (BFECC) was instroduced 

by Kim [4]. In [5], Selle presented semi-Lagrangian 

MacCormack methods. One can also apply higher order 

advection methods such as Molemaker [7] and Kim [8].   

All these methods allow fluid features to be robustly 

resolved but they still have problems when increasing 

grid size.  
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Many authors have replaced basic fluid simulation 

with synthetic turbulence or noise. For example, 

Kolmolgorov noise in Stam [9] and Lamorlette [10], curl 

noise Bridson [11] can be used to enhance the visual 

fidelity of fluid simulations by coupling the noise to 

produce a more detailed flow. Kim [12] and Narain [13] 

decide where to add noise using information from the 

previous simulation and then add it as a post process, so 

noise can be added where it is best suited. In the other 

hand, Schechter [13] and Pfaff [14] determine where to 

add noise and couple the noise to the Navier-Stokes 

equations at the same time by using use energy transport 

models. These methods were able to represent anisotropic 

effects near obstacles. However, they cannot handle free 

stream turbulence such as rising smoke, and requires 

careful tuning for the particle decay in order to obtain 

turbulence. In Kim [15] and Pfaff [16], they use wavelet 

decomposition to determine local turbulence intensities. 

Our method is most similar to these methods, but we not 

only use wavelet turbulence for synthesis, but also 

improve the coupling with the fluid simulation and 

energy transport between different scales by using the 

complete k   model. 

In order to handle very high resolution grids, Wicke 

[17] introduces a reduced order model that can handle 

large grids at a small cost. However, this method lacks 

the physical realism. In [18], Horvath introduces method 

that can run large scale two dimensional algorithms on 

GPU. Lentine [19] uses only a coarse grid projection for 

simulation high resolution grids with effectively reduces 

the amount of time required for the Poisson solve by 

using a coarse grid projection. McAdams [20] presents 

parallel multi grid Poisson solver method which can 

increase grid size but also increase memory requirement. 

All these methods successfully simulate very high 

resolution grids but they are not suitable for real time 

application and require lot of memory for solving 

equations during the simulation process. 

III. SYNTHETIC TURBULENCE 

Because the computational effort increases strongly 

with the grid size, our approach is driven by a low 

resolution Eulerian fluid solver and a synthetic turbulence 

system as described in Fig. 1. 

 

Figure 1.  An overview of our method: A low resolution grid based simulation is generated by Eulerian fluid solver using semi-Lagrangian method. 
Procedural turbulence is added according to energy model and wavelet noise. The final velocity is given by the large scale velocity from Eulerian 

fluid solver and the small scale turbulent velocity. 

 

Figure 2.  A free smoke simulation on 1280x2560x1280 resolution from only 128x256x128 grid size. 

A. Navier-Stokes and RANS Equations 

On the simulation grid, we solve the incompressible 

Navier-Stokes equations given by 

1
. .

u
u u p F v u

t 


      




  

              (1) 
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where u


is the velocity field,  is the density of the fluid, 

F


are any external forces (such as gravity), v  is the fluid 

viscosity, and p  is the fluid pressure. In most cases, 

viscosity plays a minor role in the simulations, and thus 

we often drop it. The Navier-Stokes equations without 

viscosity are called the Euler equations: 

1
.

u
u u p F

t 


    




 

                     (2) 

0u 


                                 (3)     

 In traditional simulations, we solve (2) and (3) over a 

fine simulation grid. But this method requires highly 

computational cost. Like other approaches in simulations 

using turbulences. We will use Reynolds Averaged 

Navier-Stokes (RANS) equations instead of Navier-

Stokes equations. 

In RANS equations, we break the velocities and 

pressure down into their mean and fluctuating parts: 
'

i iiu U u   ;     'p P p                   (4) 

Here iu and p  are the instantaneous variables we are 

decomposing, iU and P are the mean flow values and 

'

i
u and 'p represent the turbulent fluctuations. 

 

From (2), (3), and (4) we will have RANS equations: 

0
i

i

u

x





                               (5) 

' '
1

i i

j i j

j i j j

u
u up

v u u
x x x x

  
   

   

 
 
 

      (6) 

where the part 
' '

i j
u u  in (6) is known as the Reynolds 

stress tensor, ij , which represents the influence of the 

turbulent fluctuations on the mean flow. 

The most common approach to compute Reynolds 

stress tensor is known as the Boussinesq approximation 

[21], [22]. The Boussinesq approximation assumes the 

Reynolds stress tensor is proportional to the mean flow 

stress tensor. 

ij T ij
v S                                    (7) 

where 
T

v is the turbulent viscosity and ijS denotes the 

strain tensor given by, 

1

2

ji

j i

ij

uu
S

x x


 

 

 
 
 

                         (8) 

B. Energy Transport Model 

The presented Reynolds tress model requires a high 

grid resolution. The turbulence of the fluid flow will be 

described as an energy representation. We use the 

complete k   model [23], [24] to simulate the energy 

dynamics that allows us to inject full energy for our 

simulations. A full discussion of different turbulence 

models used in CFD can be found in Wilcox [24] and 

Pope [30]. 

Unlike one-equation models that requires strong 

assumptions, k  is a complete two-equation model. 

While k represents the turbulent kinetic energy contained 

in the smaller scales,  is commonly thought of as the 

characteristic frequency of the turbulent decay process or 

the time scale which dissipation of the turbulent energy 

occurs. Our method uses the most popular k  model 

from Wilcox [25] which is commonly referred to as the 

standard k  model: 

1

T
vDk

k P k
Dt




    
 
 
 

               (9) 

2

1 2

T
vD P

C C
Dt k

 



 
 


    

 
 
 

      

 (10)

 
The turbulent kinetic energy k  is computed in (9) and 

the specific dissipation rate  is computed in (10). The 

turbulent viscosity (or eddy viscosity) Tv is a virtual 

viscosity. It is not a property of the fluid but a property of 

the flow field and hence will vary throughout the flow 

domain. Turbulent viscosity describes the effect of small 

scale turbulent motion, in k  model, it is defined as: 

T

k
v


                                  (11) 

The constants in (9), (10) can be found in Wilcox [25].  

Like other two-equation models, in k  model the 

production P is the energy transfer from the large scale 

flow field to the small scale turbulence, is defined as: 
2

2
T ij

ij

P v S                            (12) 

where ijS given by (8) 

In [24], Wilcox showed that the k   model not only 

performs well for free flows but also for more 

complicated adverse pressure gradient flows and 

separated flows. 

C. Turbulence Synthesis 

The production of turbulent energy is in the energy 

range of fluid, while the dissipation to heat grows 

stronger for small scales. Between these two lies is 

inertial subrange, which transporting the energy from 

large to small scales.  

 

Figure 3.  Energy cascade of fluid flow. 

The statistical properties of turbulent energy can be 

described as a distribution spectrum. In Fig. 3, we show 

this spectrum which includes three sections: 

 Large scale flow: In this region, large scales are 

dominant, the production of turbulence behavior is 
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strongly dependent on the flow and very difficult 

to describe. 

 Inertial subrange: In this region, the fluid flows 

start losing energy, although most of the aspects 

such as velocity, pressure, etc are very difficult to 

handle, Kolmogorov [26] famously showed that 

the slope of the energy spectrum is always -5/3, 

also known as five-thirds law. 

 Viscous dissipation: In here, the main energy 

dissipation occurs due to viscosity. 

Frisch [27] proposes a very reasonable approximation 

for Kolmogorov theory to compute total energy at band k : 
2 5

3 3( )e k C k


                             (13) 

where C and  are the Kolmogorov constant and the 

mean energy dissipation rate. The kinetic energy at a grid 

cell x is known as: 

21
( ) ( )

2
e x u x                            (14) 

From (13) and (14) we have: 
5

6(2 ) ( )2e k e k


  , 

5

6( , 2 ) ( , ) 2u x k u x k


      (15) 

The turbulence function is a series version of (15): 
5

6

0

( ) ( ) 2

n
i

i

y x u x




                       (16) 

To enhance and make the simulation look more natural, 

like in Bridson [11], Kim [15] and Narain [13], we use 

Wavelet Noise [28] in construction an incompressible 

turbulence function. The noise is guaranteed to exist only 

over a narrow band and help the fluid flow look more 

turbulent but still does not affect much on the result of the 

simulations. The Wavelet Noise function  is a scalar 

function, in 3D we have: 

3 31 2 1 2
( ) , ,w x

y z z x x y


    
  

     

 
 
 

  (17) 

Our final turbulence function includes both noise 

function and energy model is: 
5

6

0

( ) ( ) ( ) 2

n
i

i

y x w x u x




                   (18) 

The total velocity u of the fluid flow is then given by 

the large scale flow velocityU , computed from the low 

resolution Eulerian solver, and the turbulence velocity as 

in (18): 
5

6

0

( ) ( ) 2

n
i

i

u U w x u x





                  (19) 

The parameter  in (19) encodes the shape of the 

assumed energy spectrum, and can be used to increase or 

decrease the strength of turbulence of the fluid flow. 

IV. IMPLEMENTATION AND RESULTS 

We have implemented our model to execute the 

Eulerian fluid solver for low resolution simulation and 

turbulence function for high resolution simulation. For 

the underlying Eulerian solver, we use semi-Lagrangian 

method as described in Stam [1] and Selle [29]. The 

turbulence function is computed base on our final 

equation for generating high resolution velocity field (19). 

The full algorithm is described below, and illustrated in 

Fig. 1: 

____________________________________________ 

1. Initialize simulation scenario 

2. For each n do 

3. // Grid-based fluid solver, semi – Lagrangian 

4.      Advect: 
1

( , , )
n n

q advect q t u

 


 

5.      Project: ( , )U project t u 


 

6. // Physics based model, synthetic turbulence 

7.      Compute turbulent viscosity: /
T

v k   

8.      Compute production terms: 
2

2
T ij

ij

P P v S    

9.      Integrate: (| | )k k t P k     

10.      Integrate: 
2

1 2
/C P k C

 
     

11.      Synthesize: 

5

6

0

( ) ( ) 2

n i

i

u U w x u x




    

12.      Integrate: x x tu   

13.      Advection u  

14. End For 

15. Render simulation data 

____________________________________________ 

Although the complexity of our algorithm is still 
3

( )O n due to we use standard fluid solver for low 

resolution simulation, we are able to simulate a very high 

effective resolution because a high-resolution grid is not 

required. In Fig. 2, we show a simulation of free smoke at 

very high resolution. Complete descriptions are available 

in the figure captions. Our method appears to resolve 

more high frequency detail and runs five times faster than 

the full solver. 

The advantage of our method is wavelet noise 

successfully adds small detail to the overall flow that 

make our simulation look more natural and the complete 

k  model will handle the energy dissipation that 

ensure the simulation is correct. This make our algorithm 

appears to resolve more high frequency detail at a very 

low cost. 

By design, all steps of our algorithm can be 

implemented parallel. That also suggests that the 

algorithm will perform very well on GPUs such as 

CUDA. One interesting avenue of future work would be 

to integrate our method with other CFD model. Our 

method provides an interesting twist in that it can be used 

as a prolongation operator for simulating a divergence 

free flow field. 
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